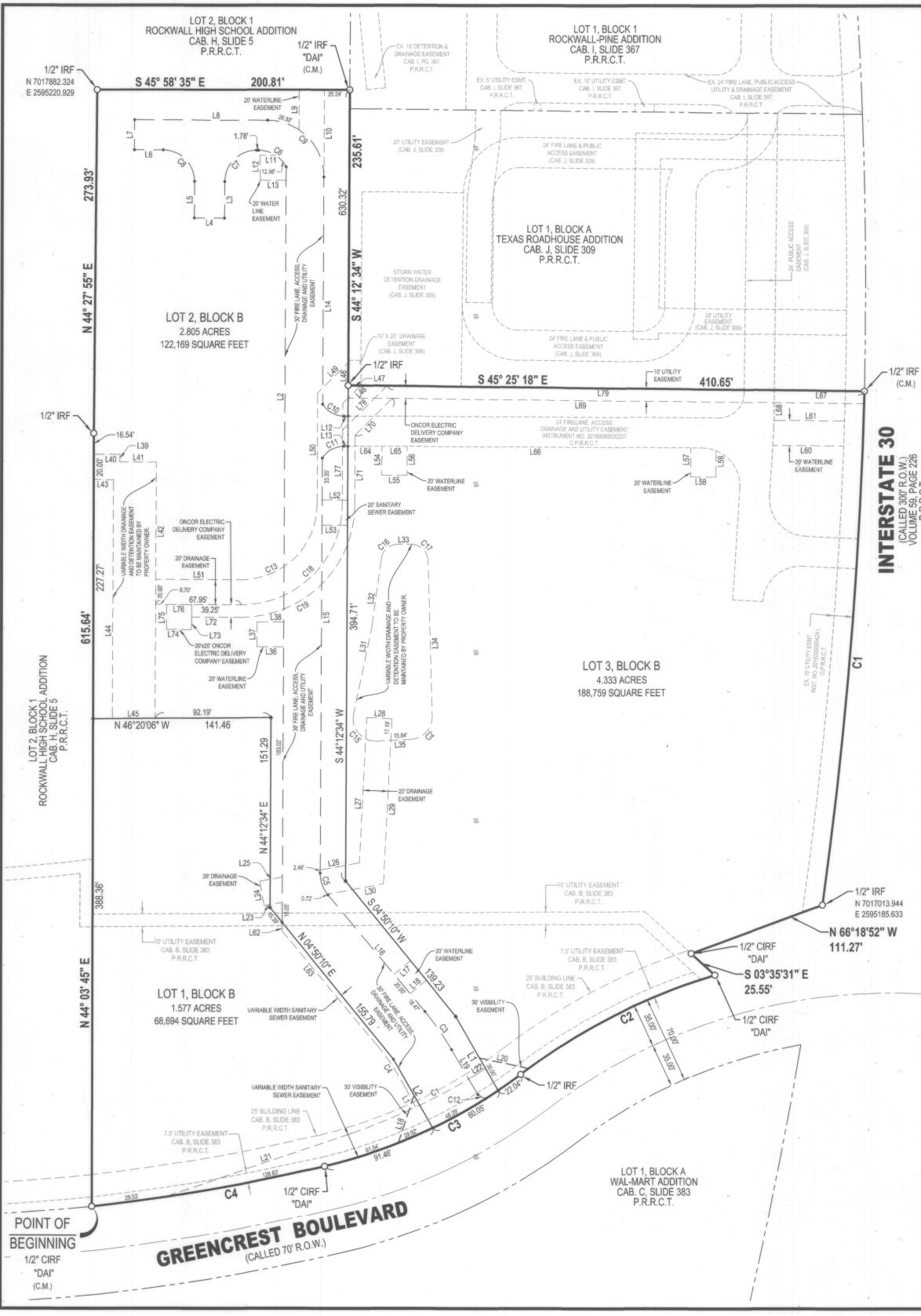

# 908 E. Interstate 30, Rockwall, TX 75087 City of Rockwall ~ Rockwall County, Texas

Owner: Greencrest TPS Hotel, L.P. 3021 Ridge Road, A-120 Rockwall, TX 75032



# Development Plans TOWNEPLACE — SUITES — MARRIOTT




RECORD DRAWINGS
December 2021

# Index of Sheets

| Sheet No.       | Title                                        |
|-----------------|----------------------------------------------|
| 1               | Cover Sheet                                  |
|                 | Replat                                       |
| 2               | Demolition Plan                              |
| 3               | Erosion Control Plan                         |
| 4               | Site Plan                                    |
| 5               | Paving Plan                                  |
| 6               | Grading Plan                                 |
| 7               | Pre Developed Drainage Area Map              |
| 8               | Post Developed Drainage Area Map             |
| 9-9A            | Storm Sewer Plan and Storm Line Calculations |
| 10              | Storm Sewer Profiles                         |
| 11 <b>-</b> 11a | Detention Pond Plan                          |
|                 | Underground Detention Pond Details           |
| 12a-d           | Detention Pond Calculations                  |
| 13              | Utility Plan                                 |
| 14              | Sanitary Sewer Line Profile                  |
|                 | Landscape Plans                              |

Construction Note All construction to be by City of Rockwall Standards and NCTCOG 4th Edition Standards.





## 20190000019144 1/2 PLAT 10/28/2019 08:41:42 AM

| BOUNDARY CURVE TABLE |       |            |               |   |  |  |  |  |  |  |  |  |  |  |
|----------------------|-------|------------|---------------|---|--|--|--|--|--|--|--|--|--|--|
| DIUŞ                 | DELTA | ARC LENGTH | CHORD BEARING |   |  |  |  |  |  |  |  |  |  |  |
|                      |       |            |               | Г |  |  |  |  |  |  |  |  |  |  |

| CURVE # | RADIUŞ   | DELTA     | ARC LENGTH | CHORD BEARING | CHORD LENGTH |
|---------|----------|-----------|------------|---------------|--------------|
| C1      | 3669.86' | 6°24'58"  | 410.95'    | S 48°33'37" W | 410.74'      |
| C2      | 485.00'  | 20°36'28" | 174.44'    | N 73°10'49" W | 173.50'      |
| C3      | 415.00'  | 23°57'39" | 173.55     | N 71°09'06" W | 172.29'      |
| C4      | 1493.00' | 7°12'39"  | 187.90'    | N 55°47'35" W | 187.77'      |

| LINE # | BEARING     | LENGTH |
|--------|-------------|--------|
| L1     | S14°11'02"W | 67.86' |
| L2     | N14°11'02"E | 63.09' |

|       |             | TABLE   |         | EMENT LINE  |        |
|-------|-------------|---------|---------|-------------|--------|
| INE # | BEARING     | LENGTH  | LINE #  | BEARING     | LENGT  |
| .1 .  | N16°15'08"E | 18.13'  | L28     | S43°09'24"E | 20.00  |
|       | S44°12'34"W | 602.01' | L29     | S46°50'36"W | 131.61 |
| .3    | N44°12'34"E | 29.10'  | L30     | N56°28'57"W | 45.31  |
| L4    | S45°47'26"E | 24.00'  | L31     | N55°46'44"E | 70.63  |
| 5     | S44°12'34"W | 29.10'  | L32     | N51°48'40"E | 55.14  |
| L6    | S45°47'26"E | 23.00'  | L33     | S45°47'26"E | 11.26  |
| L7    | S44°12'34"W | 24.00'  | L34     | S42°22'47"W | 124.20 |
| L8    | N45°47'26"W | 105.78' | L35     | N48°51'59"W | 26.98  |
| L9    | N44°12'20"E | 32.01'  | L36     | S45°47'26"E | 21.02' |
| .10   | N44°12'20"E | 69.49'  | L37     | S43°21′50"W | 20.00' |
| L11   | S45°47'26"E | 12.34'  | L38     | N45°47'26"W | 21.32  |
| .12   | N45°47'26"W | 3.23'   | L39     | N44°12'34"E | 6.00'  |
| 12    | N43°21'50"E | 20.00'  | L40     | N45°47'26"W | 20.81' |
| 3     | S45°47'26"E | 3.23'   | L41     | N45°47'26"W | 29.00  |
| 3     | N45°47'26"W | 20.48'  | L42     | N44°12'34"E | 204.26 |
| 4     | N44°12'34"E | 181.04' | L43     | S45°47'26"E | 15.76' |
| 5     | N44°12'34"E | 330.57' | L44     | S44°12'34"W | 190.58 |
| 16    | N04°14'54"E | 120.92' | L45     | S46°20'06"E | 34.00' |
| 17    | N85°45'06"W | 16.97'  | L46     | S89°13'48"W | 20.12  |
| 18    | N62°07'53"E | 40.06'  | L47     | S45°26'03"E | 10.00' |
| .18   | N85°45'06"W | 16.76'  | L48     | S44°12'34"W | 18.23' |
| _19   | N13°35'46"E | 41.58'  | L49     | N89°12'34"E | 34.27' |
| L20   | N33°49'29"W | 40.04'  | L50     | N44°12'34"E | 89.09' |
| L21   | N64°53'31"W | 156.13' | <br>L51 | S45°47'26"E | 67.95' |
| .22   | N77°40'28"W | 9.60'   | L52     | S45°47'26"E | 20.23' |
| 3     | N56°28'57"W | 14.65'  | L53     | S45°47'26"E | 20.23' |
| 24    | N33°31'03"E | 20.00'  | L54     | S44°12'34"W | 23.13' |
| 25    | S56°28'57"E | 18.43'  | L55     | S45°47'26"E | 20.00' |
| _26   | S56°28'57"E | 31.67'  | L56     | N44°12'34"E | 23.13' |
| L27   | N46°50'36"E | 115.80' | L57     | S44°12'34"W | 23.13' |

| ТΗ              | LINE #  | BEARING     | LENGTH  |
|-----------------|---------|-------------|---------|
| 3'              | L28     | S43°09'24"E | 20.00'  |
| 1'              | L29     | S46°50'36"W | 131.61' |
| D'              | L30     | N56°28'57"W | 45.31'  |
| )'              | L31     | N55°46'44"E | 70.63'  |
| )'              | L32     | N51°48'40"E | 55.14'  |
| )' <sup>'</sup> | L33     | S45°47'26"E | 11.26'  |
| )'              | L34     | S42°22'47"W | 124.20' |
| 8'              | L35     | N48°51'59"W | 26.98'  |
| 1'              | L36     | S45°47'26"E | 21.02'  |
| 9'              | L37     | S43°21'50"W | 20.00'  |
| <b>t'</b>       | L38     | N45°47'26"W | 21.32'  |
| 1               | L39     | N44°12'34"E | 6.00'   |
| )'              | L40     | N45°47'26"W | 20.81'  |
|                 | L41     | N45°47'26"W | 29.00'  |
| 3'              | <br>L42 | N44°12'34"E | 204.26' |
| 4'              | L43     | S45°47'26"E | 15.76'  |
| 7'              | L44     | S44°12'34"W | 190.58' |
| 2'              | L45     | S46°20'06"E | 34.00'  |
| 71              | L46     | S89°13'48"W | 20.12'  |
| 6'              | L47     | S45°26'03"E | 10.00'  |
| 5'              | L48     | S44°12'34"W | 18.23'  |
| 3'              | L49     | N89°12'34"E | 34.27'  |
| ť               | L50     | N44°12'34"E | 89.09'  |
| 3'              | L51     | S45°47'26"E | 67.95'  |
|                 | L52     | S45°47'26"E | 20.23'  |
| 5'              | L53     | S45°47'26"E | 20.23'  |
| )'              | L54     | S44°12'34"W | 23.13'  |
| 3'              | L55     | S45°47'26"E | 20.00'  |
| 71              | L56     | N44°12'34"E | 23.13'  |
| 0'              | L57     | S44°12'34"W | 23.13'  |

| EASEMENT LINE TABLE |             |         |  |  |  |  |  |  |  |  |  |  |  |
|---------------------|-------------|---------|--|--|--|--|--|--|--|--|--|--|--|
| LINE #              | BEARING     | LENGTH  |  |  |  |  |  |  |  |  |  |  |  |
| L58                 | S45°47'26"E | 20.00'  |  |  |  |  |  |  |  |  |  |  |  |
| L59                 | N44°12'34"E | 21.08'  |  |  |  |  |  |  |  |  |  |  |  |
| L60                 | N45°47'26"W | 56.53'  |  |  |  |  |  |  |  |  |  |  |  |
| L61                 | N45°47'26"W | 56.20'  |  |  |  |  |  |  |  |  |  |  |  |
| L62                 | N44°12'34"E | 6.81'   |  |  |  |  |  |  |  |  |  |  |  |
| L63                 | N04°14'54"E | 118.65' |  |  |  |  |  |  |  |  |  |  |  |
| L64                 | S45°47'26"E | 27.15'  |  |  |  |  |  |  |  |  |  |  |  |
| L65                 | S45°47'26"E | 20.00'  |  |  |  |  |  |  |  |  |  |  |  |
| L66                 | S45°47'26"E | 225.76' |  |  |  |  |  |  |  |  |  |  |  |
| L67                 | N45°25'18"W | 71.61'  |  |  |  |  |  |  |  |  |  |  |  |
| L68                 | S44°39'11"W | 24.26'  |  |  |  |  |  |  |  |  |  |  |  |
| L69                 | N45°25'18"W | 375.33' |  |  |  |  |  |  |  |  |  |  |  |
| L70                 | S89°12'34"W | 41.50'  |  |  |  |  |  |  |  |  |  |  |  |
| L71                 | S44°12'34"W | 55.53'  |  |  |  |  |  |  |  |  |  |  |  |
| L72                 | N45°47'26"W | 39.25'  |  |  |  |  |  |  |  |  |  |  |  |
| L73                 | S44°12'34"W | 10.00'  |  |  |  |  |  |  |  |  |  |  |  |
| L74                 | N45°47'26"W | 20.00'  |  |  |  |  |  |  |  |  |  |  |  |
| L75                 | N44°12'34"E | 20.00'  |  |  |  |  |  |  |  |  |  |  |  |
| L76                 | S45°47'26"E | 20.00'  |  |  |  |  |  |  |  |  |  |  |  |
| L77                 | S44°12'34"W | 80.81'  |  |  |  |  |  |  |  |  |  |  |  |
| L78                 | N89°12'34"E | 49.82'  |  |  |  |  |  |  |  |  |  |  |  |
| L79                 | S45°25'18"E | 379.65' |  |  |  |  |  |  |  |  |  |  |  |

| 60 3                                                                                                                      | 30 O                      | 60 |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|----|
| LEGEND                                                                                                                    | SCALE IN FEET<br>1" = 60' | 4  |
| (C.M.) - CONTROLLING MONUMENT<br>IRF - IRON ROD FOUND<br>CIRF - CAPPED IRON ROD FOUND<br>INST INSTRUMENT<br>CAB - CABINET |                           |    |

tnp

60

CAB. - CABI VOL. - VOLUME

NO. - NUMBER

PG. - PAGE

D.R.R.C.T. - DEED RECORDS ROCKWALL COUNTY, TEXAS P.R.R.C.T. - PLAT RECORDS ROCKWALL COUNTY TEXAS

O.P.R.R.C.T. - OFFICIAL PUBLIC RECORDS ROCKWALL COUNTY TEXAS

#### GENERAL NOTES:

(1) BEARINGS ARE REFERENCED TO GRID NORTH OF THE TEXAS COORDINATE SYSTEM OF 1983 (NORTH CENTRAL ZONE 4202; NAD83(2011) EPOCH 2010) AS DERIVED LOCALLY FROM WESTERN DATA SYSTEMS CONTINUOUSLY OPERATING REFERENCE STATIONS (CORS) VIA REAL TIME KINEMATIC (RTK) SURVEY METHODS. ALL DISTANCES SHOWN ARE SURFACE DISTANCES USING A COMBINED SCALE FACTOR OF 1.000146135.

(2) BY GRAPHIC SCALE ONLY AND PER THE NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP FOR ROCKWALL COUNTY, TEXAS AND INCORPORATED AREAS, MAP NO. 48397C0040L, EFFECTIVE DATE: SEPTEMBER 26, 2008, THE SUBJECT PROPERTY IS SHOWN TO BE LOCATED IN ZONE "X". THE LOCATION OF THE SAID FLOOD ZONES IS BASED ON SAID MAP AND IS APPROXIMATE AND IS NOT LOCATED ON THE GROUND. THIS STATEMENT SHALL NOT CREATE LIABILITY ON THE PART OF THE SURVEYOR. RELEVANT ZONES ARE DEFINED AS FOLLOWS

(3) THE SURVEYOR, AS REQUIRED BY STATE LAW, IS RESPONSIBLE FOR SURVEYING INFORMATION ONLY AND BEARS NO RESPONSIBILITY FOR THE ACCURACY OF THE ENGINEERING DATA ON THIS PLAT.

- (4) THE SURVEYOR HAS MADE NO INVESTIGATION OR INDEPENDENT SEARCH FOR EASEMENTS, ENCUMBRANCES, OR ANY OTHER FACTS THAT AN ACCURATE AND CURRENT TITLE SEARCH MAY DISCLOSE.
- (5) ALL CORNERS ARE A 5/8" IRON ROD WITH CAP STAMPED "TNP" UNLESS OTHERWISE SHOWN.
- (6) COORDINATES SHOWN ARE GRID VALUES REFERENCED TO THE CITY OF ROCKWALL GPS MONUMENT NETWORK.
- (7) IT SHALL BE THE POLICY OF THE CITY OF ROCKWALL TO WITHHOLD ISSUING BUILDING PERMITS UNTIL ALL STREETS, WATER, SEWER, AND STORM DRAINAGE SYSTEMS HAVE BEEN ACCEPTED BY THE CITY. THE APPROVAL OF THE PLAT BY THE CITY DOES NOT CONSTITUTE ANY REPRESENTATION, ASSURANCE OR GUARANTEE THAT ANY BUILDING WITHIN SUCH PLAT SHALL BE APPROVED, AUTHORIZE OR PERMIT THEREFORE ISSUED NOR SHALL SUCH APPROVAL CONSTITUTE ANY REPRESENTATION, ASSURANCE OR GUARANTEE BY THE CITY OF THE ADEQUACY AND AVAILABILITY FOR WATER FOR PERSONAL USE AND FIRE PROTECTION WITHIN SUCH PLAT, AS **REQUIRED UNDER ORDINANCE 83-54.**

# **FINAL PLAT TOWN PLACE MARRIOTT ADDITION** LOT 1, LOT 2, AND LOT 3, BLOCK B **3 LOTS**

8.715 ACRES OR 379,622 SQUARE FEET SITUATED IN THE JD MCFARLAND SURVEY, ABSTRACT NO. 145 CITY OF ROCKWALL, ROCKWALL COUNTY, TEXAS

| C4- | 190.00' | 12°00'14"  | 39.81'  | N 10°15'01" E | 39.73'  |
|-----|---------|------------|---------|---------------|---------|
| C5  | 27.00'  | 39°57'40"  | 18.83'  | N 24°13'44" E | 18.45'  |
| C6  | 25.00'  | 61°38'33"  | 26.90'  | S 14°58'10" E | 25.62'  |
| C7  | 25.00'  | 90°00'00"  | 39.27'  | N 89°12'34" E | 35.36'  |
| C8  | 25.00'  | 90°00'00"  | 39.27'  | S 00°47'26" E | 35.36'  |
| C9  | 45.00'  | 90°00'00"  | 70.69'  | N 00°47'26" W | 63.64'  |
| C10 | 20.00'  | 58°12'42"  | 20.32'  | N 16°41'05" W | 19.46'  |
| C11 | 20.00'  | 58°12'42"  | 20.32'  | S 74°53'47" E | 19.46'  |
| C12 | 30.00'  | 13°22'38"  | 7.00'   | N 18°56'04" W | 6.99'   |
| C13 | 60.00'  | 90°00'00"  | 94.25'  | N 89°12'34" E | 84.85'  |
| C15 | 18.00'  | 104°38'44" | 32.88'  | N 03°27'22" E | 28.49'  |
| C16 | 13.00'  | 82°23'54"  | 18.70'  | S 86°59'23" E | 17.13'  |
| C17 | 13.00'  | 88°10'13"  | 20.01'  | S 01°42'20" E | 18.09'  |
| C18 | 80.00'  | 90°00'00"  | 125.66' | S 89°12'34" W | 113.14' |
| C19 | 90.00'  | 90°00'00"  | 141.37' | S 89°12'34" W | 127.28' |

EASEMENT CURVE TABLE

109.32'

27.88'

36.95'

DELTA ARC LENGTH CHORD BEARING

N 71°17'00" W

S 86°45'24" W

N 08°55'20" E

CHORD LENGTH

109.09'

25.18

36.91'

OWNER GREENCREST TPS HOTEL, LP. 10000 North Central Expressway Suite 400 Dallas, TX 75231

CURVE # RADIUS

490.00'

18.00'

226.50'

12°46'57"

88°45'14"

9°20'53"

C1

C2

C3

OWNER ROCKWALL RENTAL PROPERTIES L.P. P.O. Box. B Terrell, TX. 75160

CASE NO. P2019-021

**PROJECT INFORMATION** 

Project No.: FCU 18061 Date: October 2, 2019 Drawn By: GS9 Scale: 1"=60' SHEET 1 of 2

## SURVEYOR

TEAGUE NALL AND PERKINS, INC. 825 Watters Creek Boulevard, Suite M300 Allen, Texas 75013 214.461.9867 ph 214.461.9864 fx T.B.P.L.S. Registration No. 10194381 www.tnpinc.com

AC. VOLUME 59, F D.R.R.C

#### **OWNERS CERTIFICATE**

STATE OF TEXAS} COUNTY OF ROCKWALL}

WHEREAS, Greencrest TPS Hotel, LP. and Rockwall Rental Properties, LP. are the owner's of a tract of land out of the J.D. McFarland Survey, Abstract Number 145 being a portion of Lot 1, Block B of Goldencrest Addition, an addition to the city of Rockwall as recorded in Cabinet B, Slide 383 of the Plat Records of Rockwall County, Texas, same being a portion of a called 14.45 acre tract of land described by deed to Rockwall Rental Properties, L.P. as recorded in Volume 4076, Page 48 of the Deed Records of Rockwall County, Texas, and all of a called 2.805 acre tract of land to Greencrest TPS Hotel, LP. as recorded in Instrument Number 20180000020236 of the Official Public Records of Rockwall County, Texas and being more particularly described as follows:

BEGINNING at a 1/2 inch iron rod with cap stamped "DAI" found for the south corner of Lot 2, Block 1 of Rockwall Highschool Addition, an addition to the City of Rockwall as recorded in Cabinet H, Slide 5 of the Plat Records of Rockwall County, Texas, said point also being the west corner of said 14.45 acre tract and lying on the northeast line of Greencrest Boulevard, a called 70.00 feet wide right-of-way;

THENCE North 44 degrees 03 minutes 45 seconds East along the southeast line of said Lot 2, a distance of 615.64 feet to a 1/2 inch iron rod found for corner;

THENCE North 44 degrees 27 minutes 55 seconds East continuing along the southeast line of said Lot 2, a distance of 273.93 feet to a 1/2 inch iron rod found for an inner ell corner of said Lot 2;

THENCE South 45 degrees 58 minutes 35 seconds East continuing along the southeast line of said Lot 2, a distance of 200.81 feet to a 1/2 inch iron rod with cap stamped "DAI" found for a south corner of same lying on the northwest line of Lot 1, Block 1 Rockwall Pine Addition, an addition to the City of Rockwall as recorded in Cabinet I, Slide 367 of the Plat Records of Rockwall County, Texas

THENCE South 44 degrees 12 minutes 34 seconds West along the northwest line of said Rockwall-Pine Addition, passing a 1/2 inch iron rod with cap stamped "ADAMS" found for the west corner of same, also for the north corner of Lot 1, Block A, Texas Roadhouse Addition, an addition to the City of Rockwall as recorded in Cabinet J, Slide 309 of the Plat Records of Rockwall County, Texas, and continuing along the northwest line of said Texas Roadhouse Addition, a total distance of 235.61 feet to a 1/2 inch iron rod found for the west corner of said Lot 1, Block A, Texas Roadhouse Addition;

THENCE South 45 degrees 25 minutes 18 seconds East along the southwest line of said Lot 1, Block A, Texas Roadhouse Addition, a distance of 410.65 feet to a 1/2 inch iron rod found for the south corner of same lying on the northwest right-of-way line of Interstate Highway No. 30 (a variable width right-of-way) at the beginning of a curve to the right;

THENCE with said curve to the right along the northwest right-of-way line of Interstate Highway No. 30 having a radius of 3669.86 feet, a central angle of 06 degrees 24 minutes 58 seconds, an arc length of 410.95 feet, a chord bearing of South 48 degrees 33 minutes 37 seconds West, a distance of 410.74 feet to a 1/2 inch iron rod found for corner on the northeast line of previously mentioned Greencrest Boulevard:

THENCE long the northeast line of said Greencrest Boulevard the following courses and distances;

North 66 degrees 18 minutes 52 seconds West, a distance of 111.27 feet to a 1/2 inch iron rod with cap stamped "DAI" found for corner;

South 03 degrees 35 minutes 31 seconds East, a distance of 25.55 feet to a 1/2 inch iron rod with cap stamped "DAI" found for corner at the beginning of a curve to the left;

With said curve to the left having a radius of 485.00 feet, a central angle of 20 degrees 36 minutes 28 seconds, an arc length of 174.44 feet, a chord bearing of North 73 degrees 10 minutes 49 seconds West, a distance of 173.50 feet to a 1/2 inch iron rod found for corner at the beginning of a reverse curve to the right;

With said reverse curve to the right having a radius of 415.00 feet, a central angle of 23 degrees 57 minutes 39 seconds, an arc length of 173.55 feet, a chord bearing of North 71 degrees 09 minutes 06 seconds West, a distance of 172.29 feet to a 1/2 inch iron rod with cap stamped "DAI" found for corner at the beginning of a compound curve continuing to the right;

With said compound curve continuing to the right having a radius of 1493.00 feet, a central angle of 07 degrees 12 minutes 39 seconds, an arc length of 187.90 feet, a chord bearing of North 55 degrees 47 minutes 35 seconds West, a distance of 187.77 feet to the POINT OF BEGINNING containing 379,622 square Feet, or 8.715 acres of land.

#### SURVEYOR'S CERTIFICATE

NOW, THEREFORE KNOW ALL MEN BY THESE PRESENTS:

THAT I, Brian J. Maddox, do hereby certify that I prepared this plat from an actual and accurate survey of the land, and that the corner monuments shown thereon were properly placed under my personal supervision.

GIVEN UNDER MY HAND AND SEAL OF OFFICE THIS THE 44 DAY OF October, 2019



Planning & Zon Commission, Chairman

**APPROVED:** 

128/19

I hereby certify that the above and foregoing plat of an addition to the City of Rockwall, Texas was approved by the City Council of the City of Rockwall on the 3 day of \_\_\_\_\_\_2019.

This approval shall be invalid unless the approved Plat for such Addition is recorded in the office of the County Clerk of Rockwall County, Texas, within one hundred eighty (180) days from said date of final approval.

|   | Witness our hands this the 4th day of <u>OCTOLER</u> 2019.<br>Mayor, City of Rockwall Must ROCK Warman City Secretary | <u>Armzwilliams, PE</u><br>City Engineer |
|---|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| L | SEAL E                                                                                                                | -                                        |

Filed and Recorded Official Public Records Shelli Miller, County Clerk Rockwall County, Texas 10/28/2019 08:41:42 AM \$100.00 20190000019144

## OWNERS DEDICATION

NOW, THEREFORE, KNOW ALL MEN BY THESE PRESENTS:

STATE OF TEXAS} COUNTY OF ROCKWALL}

I the undersigned owner of the land shown on this plat, and designated herein as TOWN PLACE MARRIOTT ADDITION to the City of Rockwall, Texas, and whose name is subscribed hereto, hereby dedicate to the use of the public forever all streets, alleys, parks, water courses, drains, easements and public places thereon shown on the purpose and consideration therein expressed. I understand and do hereby reserve the easement strips shown on this plat for the purposes stated and for the mutual use and accommodation of all utilities desiring to use or using same. I also understand the following;

1. No buildings shall be constructed or placed upon, over, or across the utility easements as described herein.

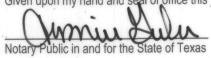
2. Any public utility shall have the right to remove and keep removed all or part of any buildings, fences, trees, shrubs, or other growths or improvements which in any way endanger or interfere with construction, maintenance or efficiency of their respective system on any of these easement strips; and any public utility shall at all times have the right of ingress or egress to, from and upon the said easement strips for purpose of construction, reconstruction, inspecting, patrolling, maintaining, and either adding to or removing all or part of their respective system without the necessity of, at any time, procuring the permission of anyone.

3. The City of Rockwall will not be responsible for any claims of any nature resulting from or occasioned by the establishment of grade of streets in the subdivision.

4. The developer and subdivision engineer shall bear total responsibility for storm drain improvements.

5. The developer shall be responsible for the necessary facilities to provide drainage patterns and drainage controls such that properties within the drainage area are not adversely affected by storm drainage from the development.

6. Drainage/Detention Easements/Facilities shall be owned, operated, maintained and repaired by property owner.


7. No house dwelling unit, or other structure shall be constructed on any lot in this addition by the owner or any other person until the developer and/or owner has complied with all requirements of the Subdivision Regulations of the City of Rockwall regarding improvements with respect to the entire block on the street or streets on which property abuts, including the actual installation of streets with the required base and paving, curb and gutter, water and sewer, drainage structures, storm structures, storm sewers, and alleys, all according to the specifications of the City of Rockwall; or until an escrow deposit, sufficient to pay for the cost of such improvements, as determined by the city's engineer and/or city administrator, computed on a private commercial rate basis, has been made with the city secretary, accompanied by an agreement signed by the developer and/or owner, authorizing the city to make such improvements at prevailing private commercial rates, or have the same made by a contractor and pay for the same out of the escrow deposit, should the developer and/or owner fail or refuse to install the required improvements within the time stated in such written agreement, but in no case shall the City be obligated to make such improvements itself. Such deposit may be used by the owner and/or developer as progress payments as the work progresses in making such improvements by making certified requisitions to the city secretary, supported by evidence of work done; or until the developer and/or owner files a corporate surety bond with the city secretary in a sum equal to the cost of such improvements for the designated area, guaranteeing the installation thereof within the time stated in the bond, which time shall be fixed by the city council of the City of Rockwall.

We further acknowledge that the dedications and/or exaction's made herein are proportional to the impact of the Addition upon the public services required in order that the development will comport with the present and future growth needs of the City; we, our successors and assigns hereby waive any claim, damage, or cause of action that we may have as a result of the dedication of exactions made herein.

ROCKWALL RENTAL PROPERTIES, L

STATE OF TEXAS} COUNTY OF ROCKWALL}

H.NOL, known to me to be the person whose name is subscribed to the foregoing instrument, and Before me, the undersigned authority, on this day personally appeared acknowledged to me that he executed the same for the purpose and consideration therein stated. Given upon my hand and seal of office this \_\_\_\_\_\_day of \_\_\_\_\_\_, 2019.



GREENCREST TPS HOTEL, LP

Notary ID #131430520 Ay Commission Expire January 31, 2022

JASMINE GALAN

Vuene E Kuntan Representative:

STATE OF TEXAS} COUNTY OF ROCKWALL}

Before me, the undersigned authority, on this day personally appeared Thomas Ekrklands to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that he executed the same for the purpose and consideration therein stated. Given upon my hand and seal of office this \_\_\_\_\_\_\_\_ day of \_\_\_\_\_\_\_, 2019.

mu duly



FINAL PLAT TOWN PLACE MARRIOTT ADDITION LOT 1, LOT 2, AND LOT 3, BLOCK B 3 LOTS

8.715 ACRES OR 379,622 SQUARE FEET SITUATED IN THE JD MCFARLAND SURVEY, ABSTRACT NO. 145 CITY OF ROCKWALL, ROCKWALL COUNTY, TEXAS

SURVEYOR

TEAGUE NALL AND PERKINS, INC.

825 Watters Creek Boulevard, Suite M300

Allen, Texas 75013

214.461.9867 ph 214.461.9864 fx

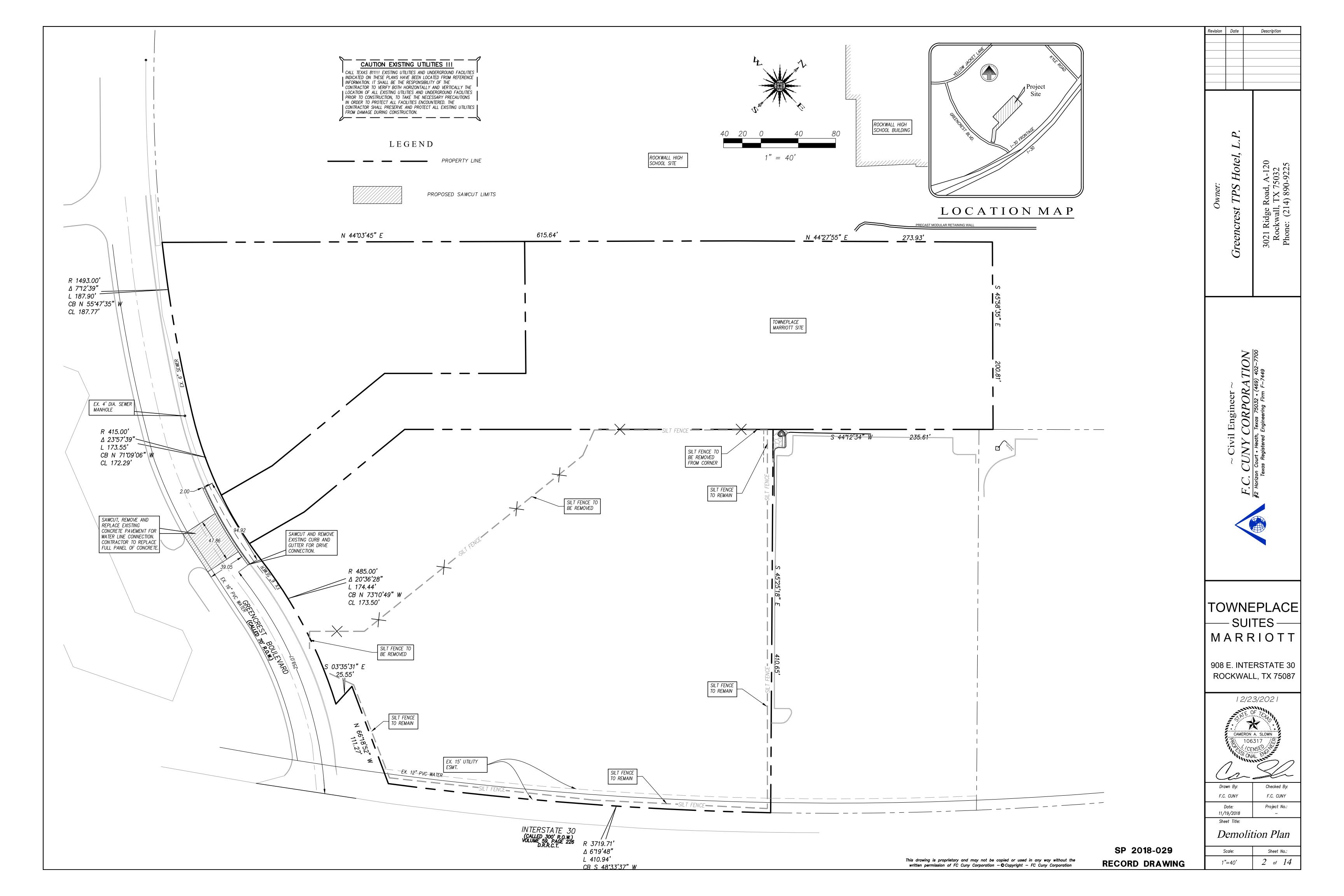
T.B.P.L.S. Registration No. 10194381

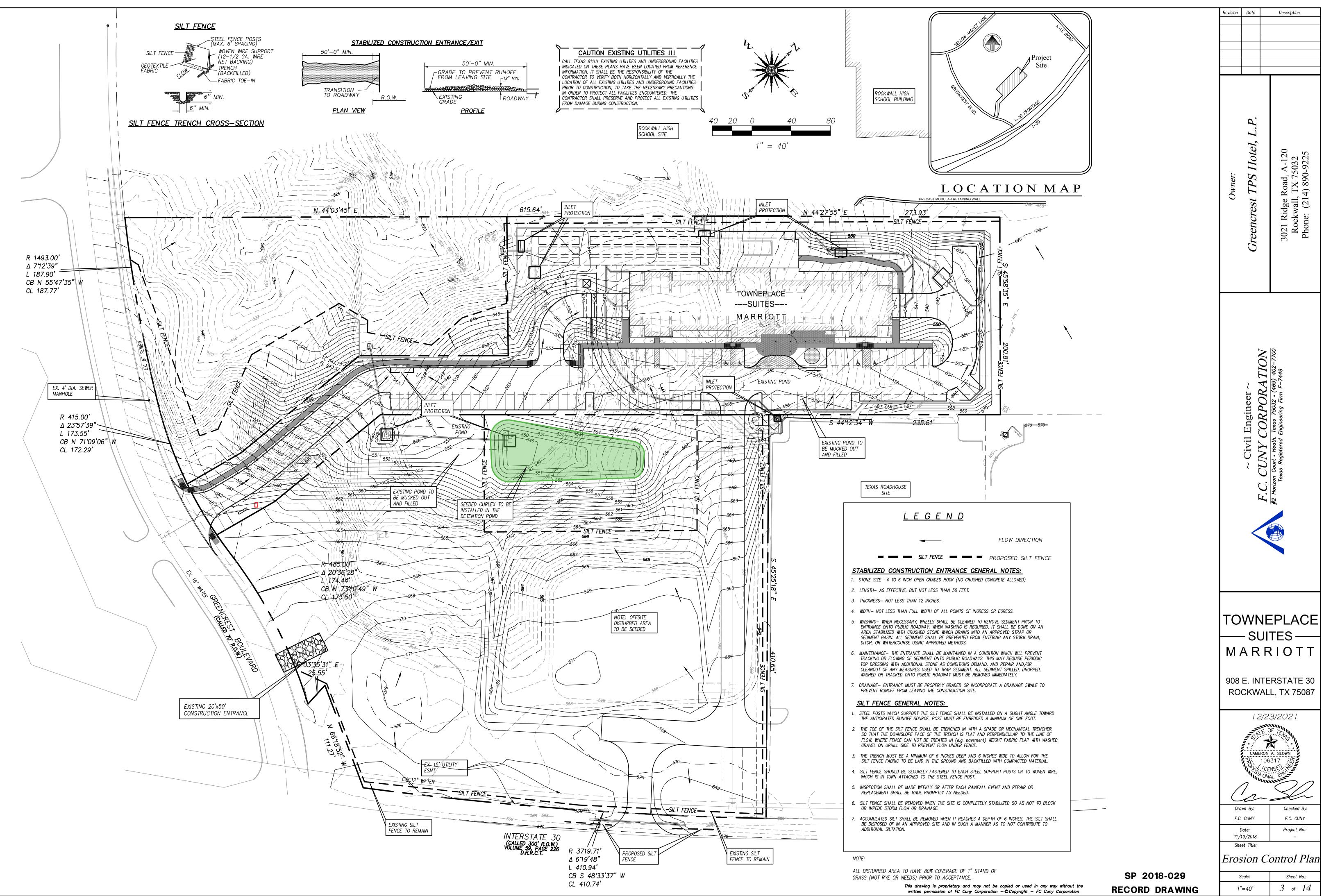
www.tnpinc.com

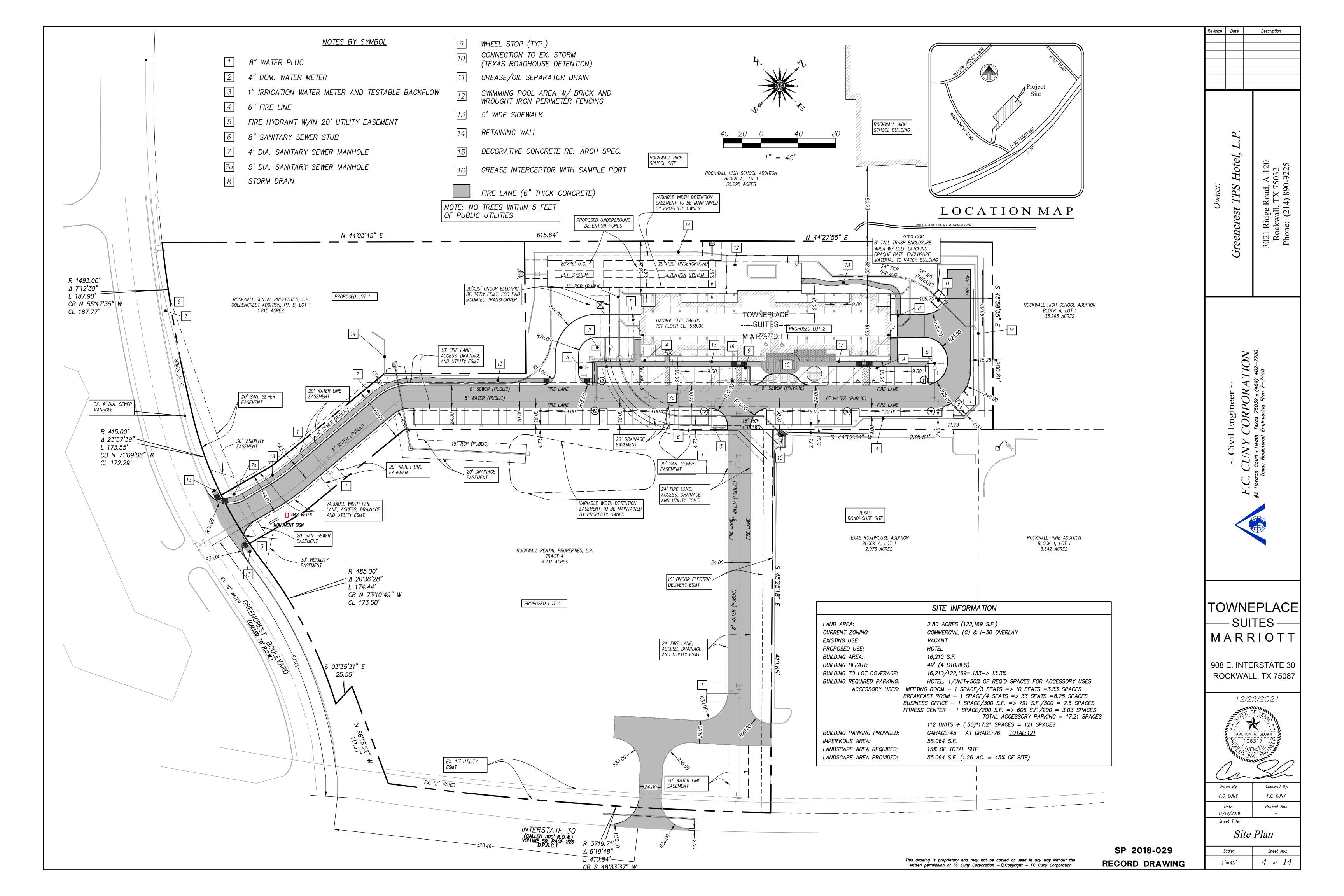
OWNER GREENCREST TPS HOTEL, LP. 10000 North Central Expressway Suite 400 Dallas, TX 75231

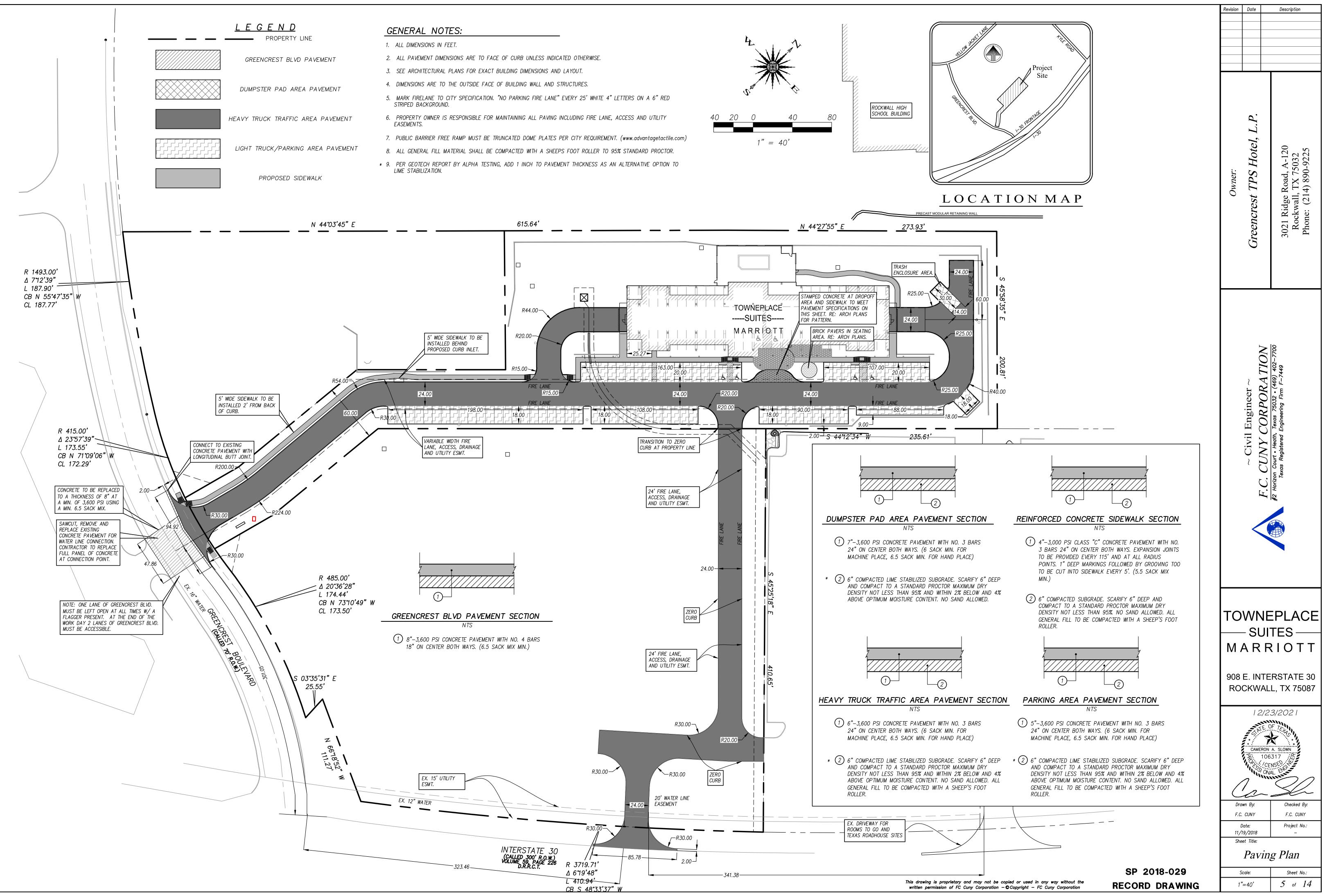
OWNER ROCKWALL RENTAL PROPERTIES L.P. P.O. Box. B Terrell, TX. 75160

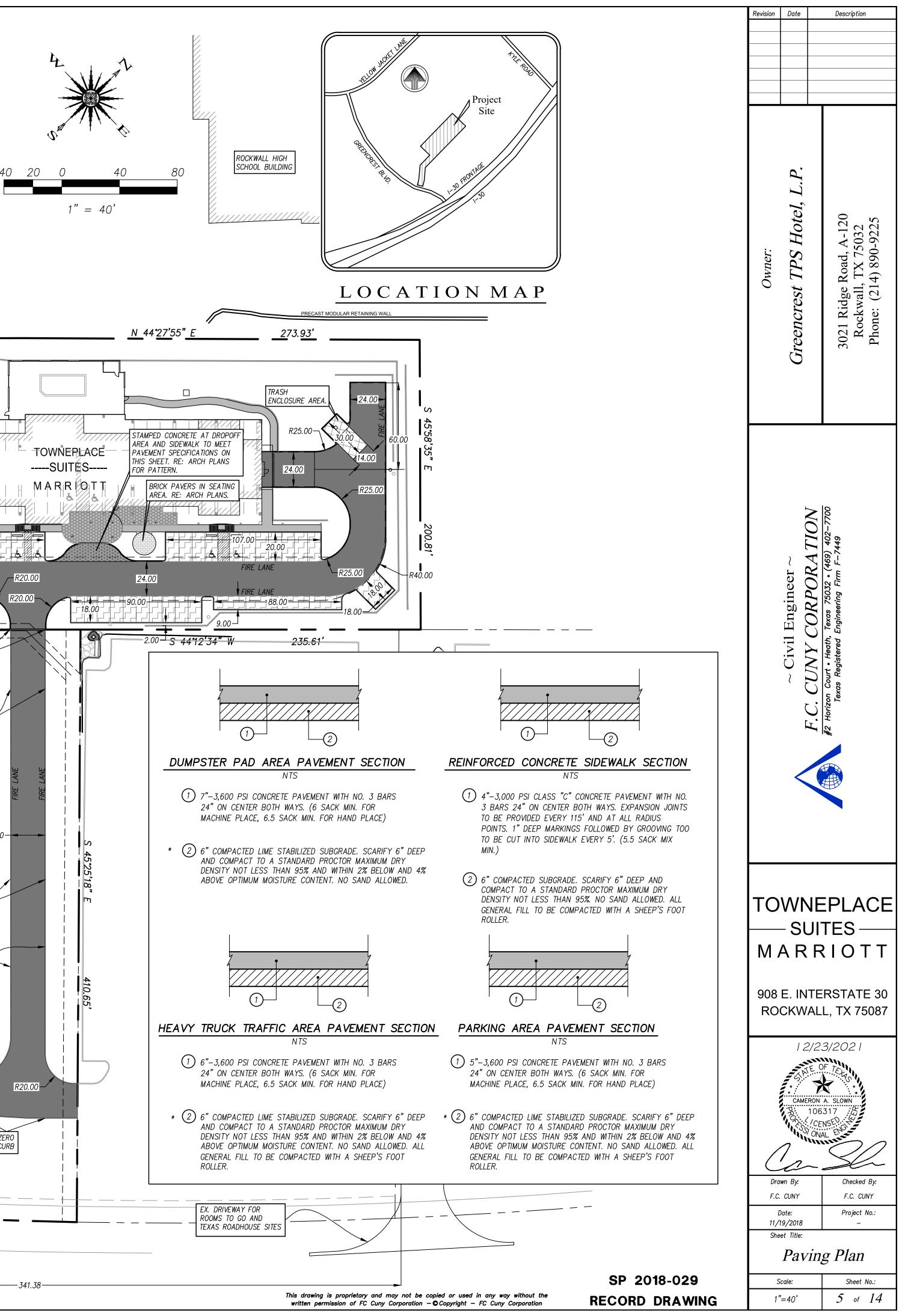
JASMINE GALAN

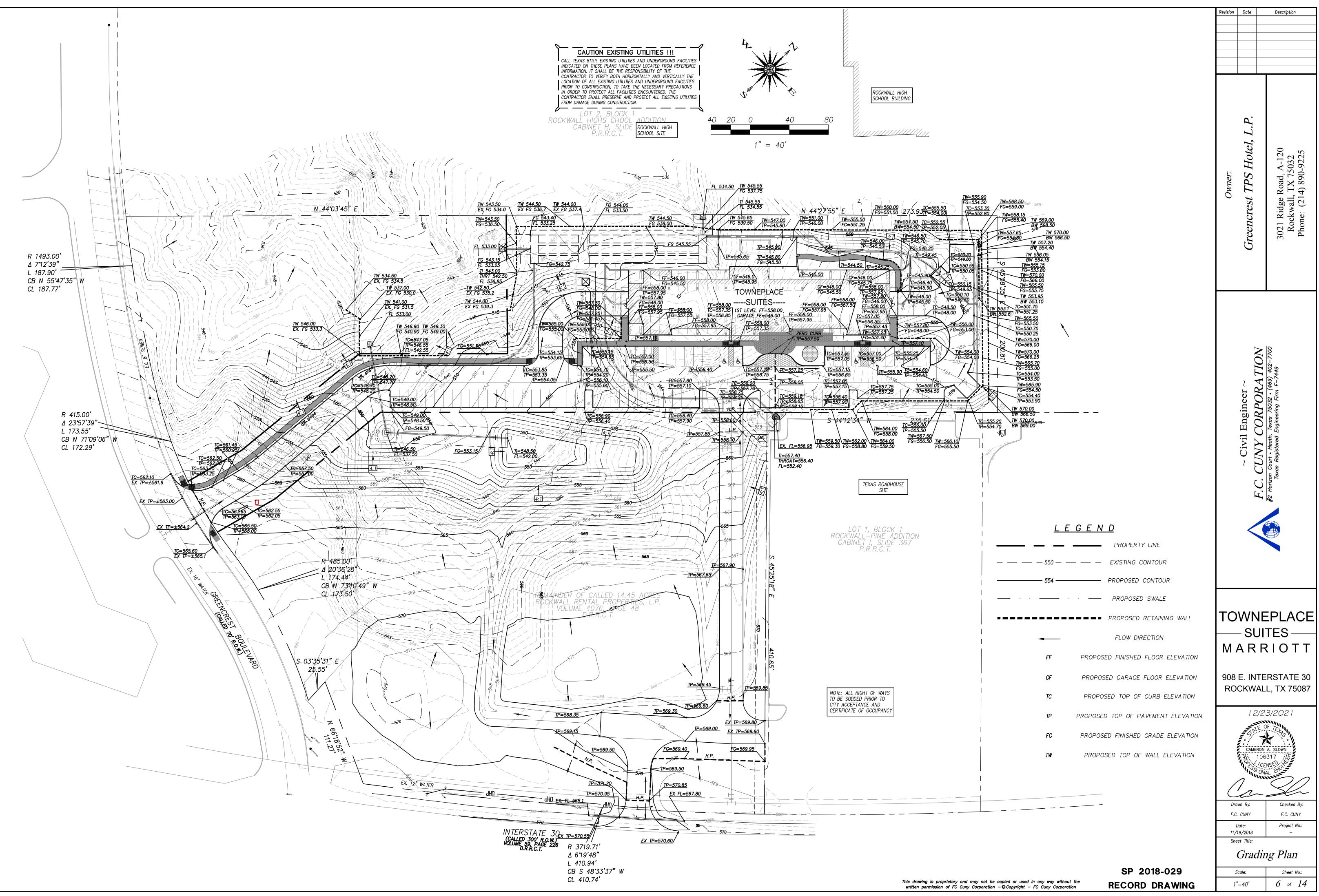

Notary ID #131430520 **My Commission Expires** January 31, 2022

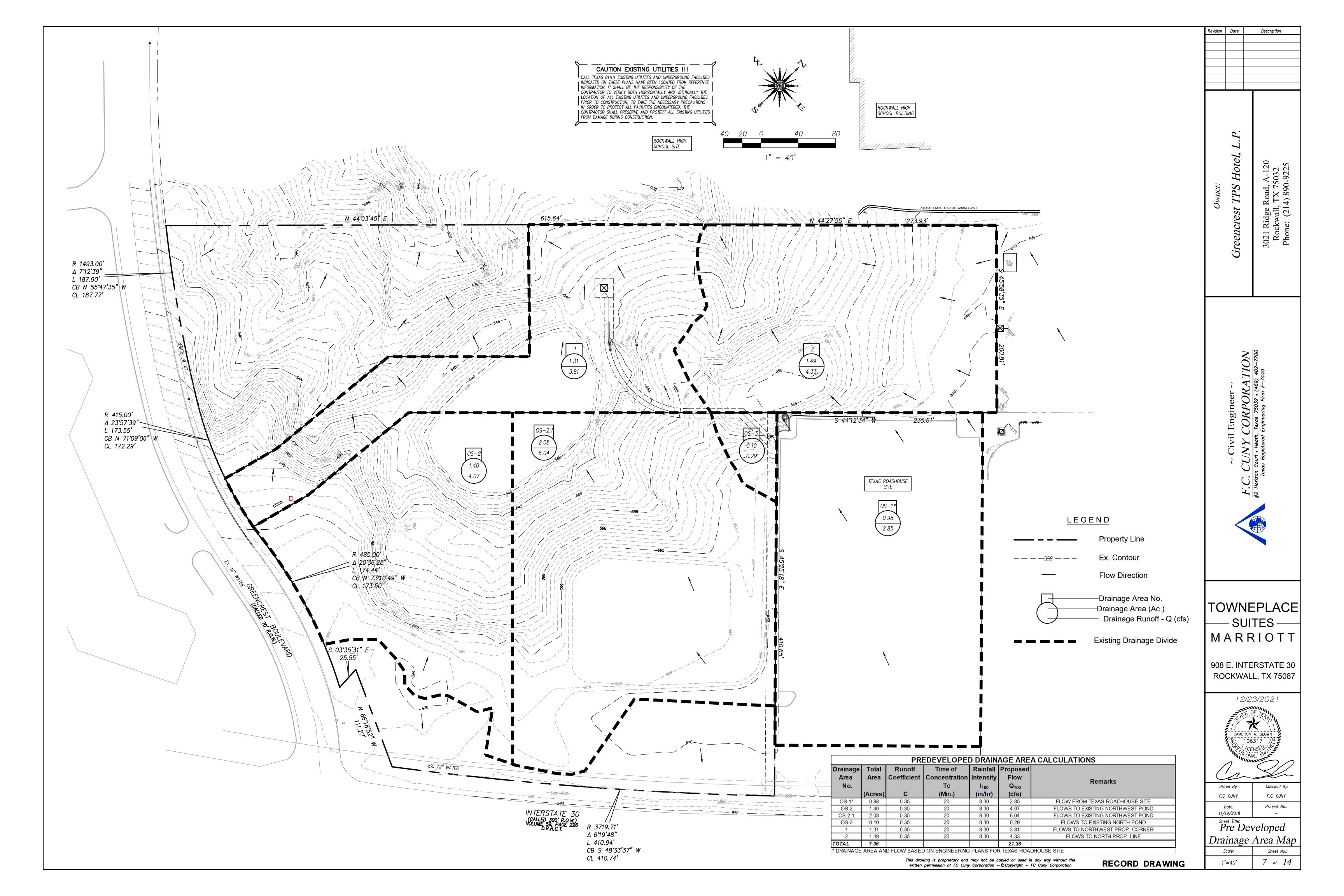

CASE NO. P2019-021

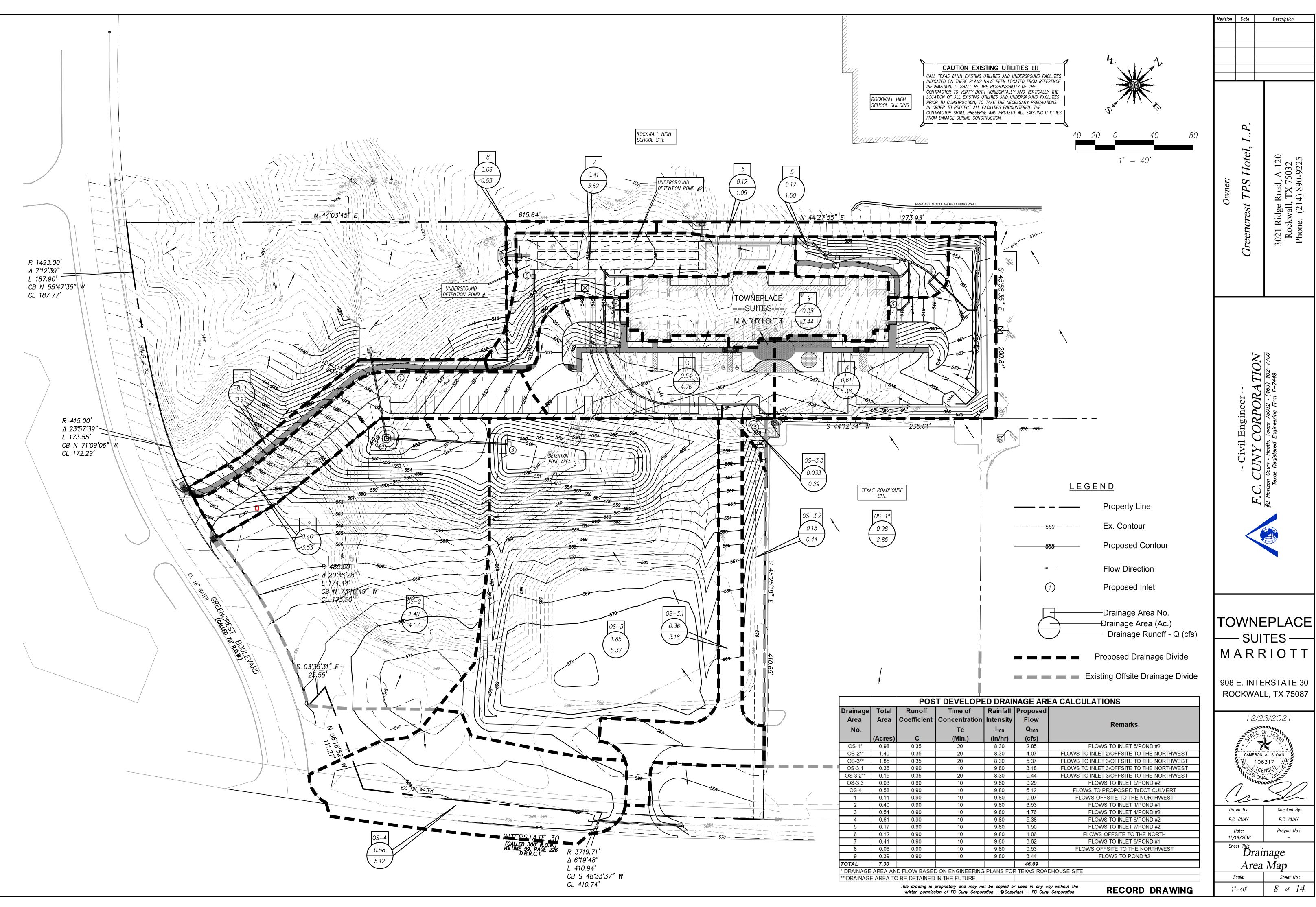

PROJECT INFORMATION

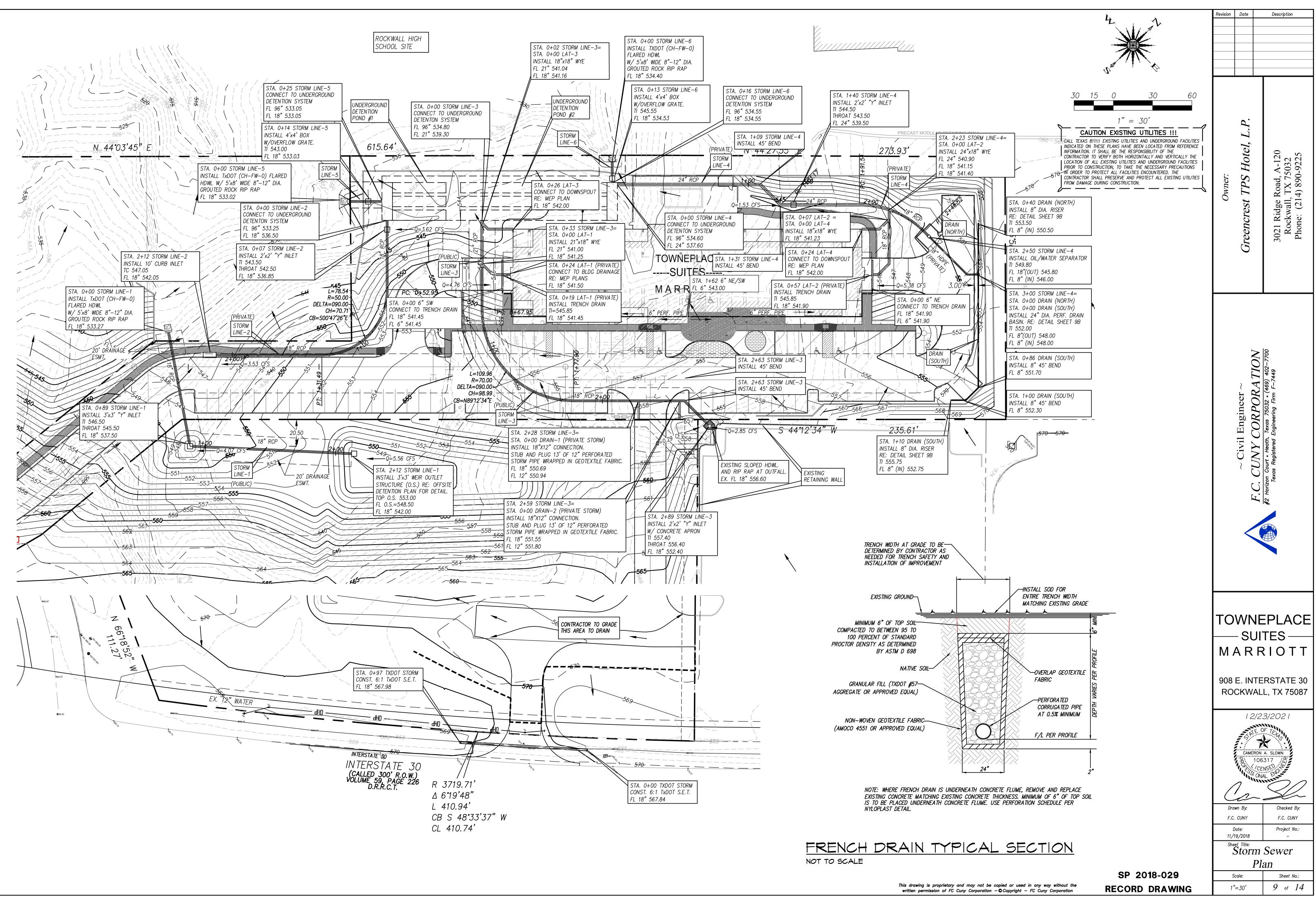

Project No.: FCU 18061 Date: October 2, 2019 Drawn By: GS9 Scale: 1"=60'


SHEET 2 of 2



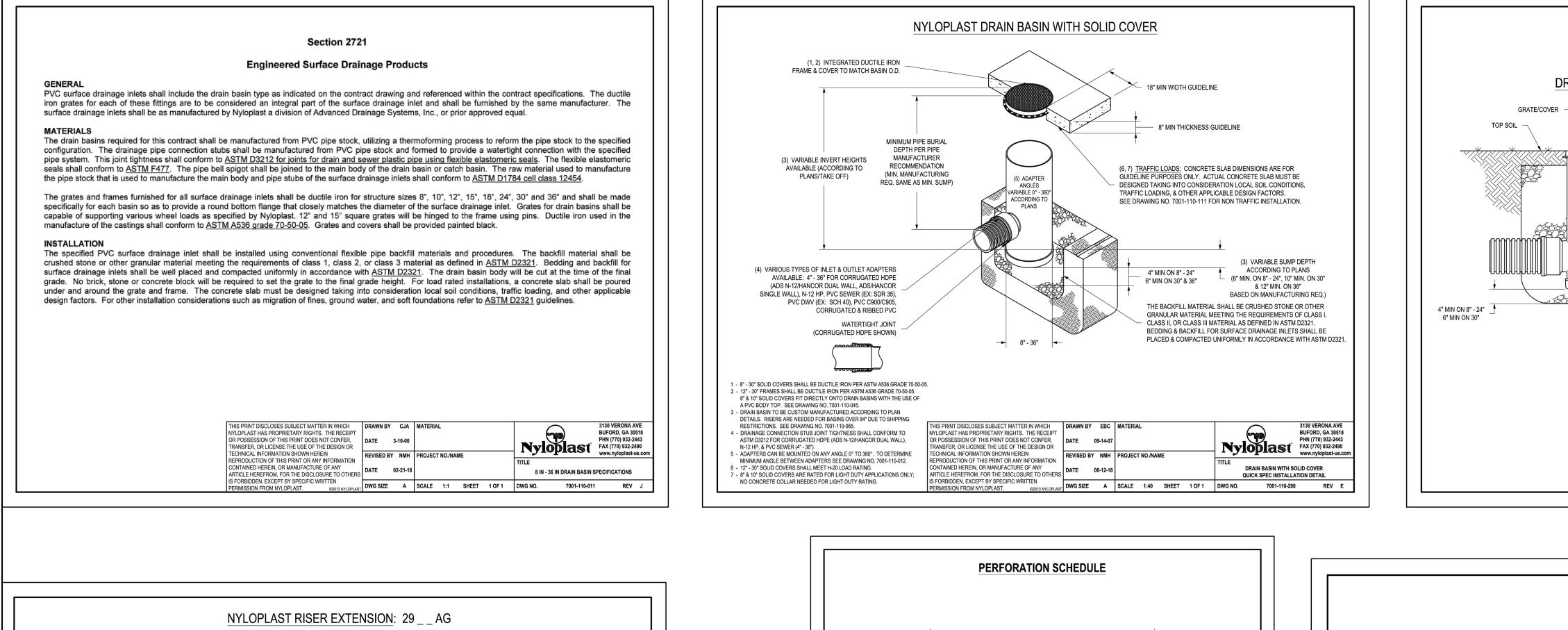



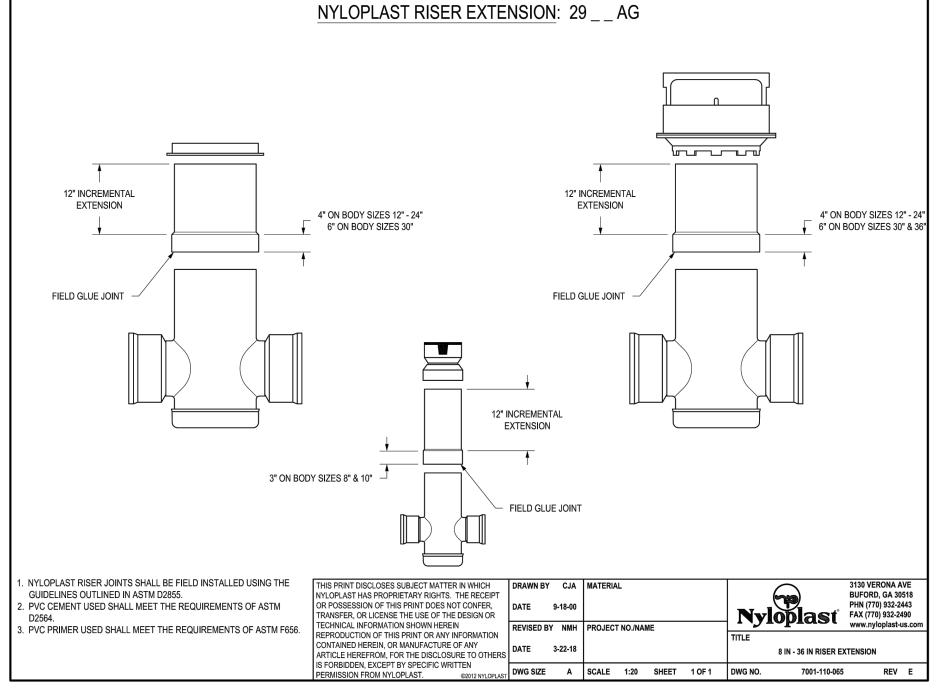



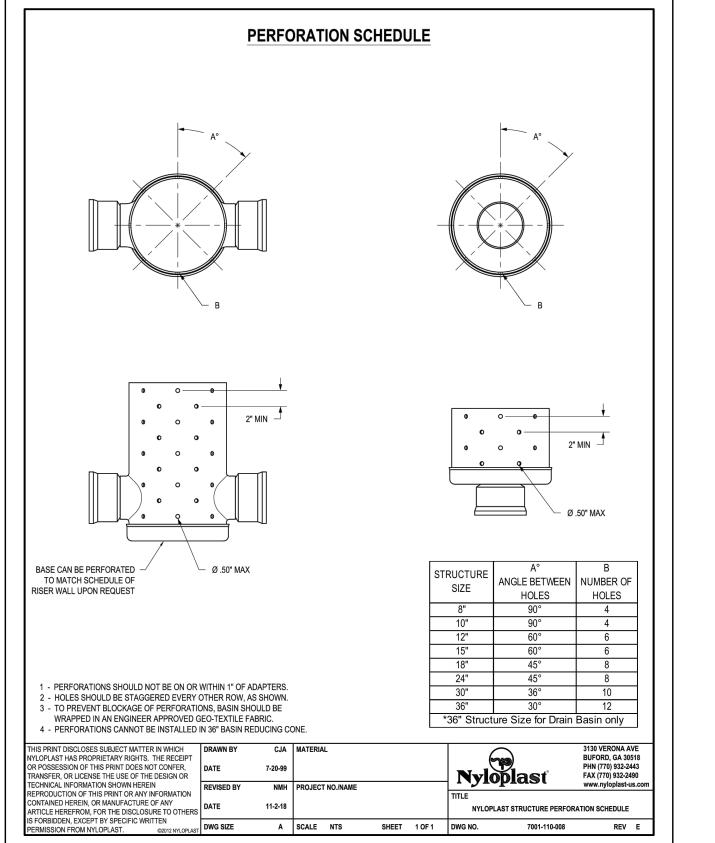


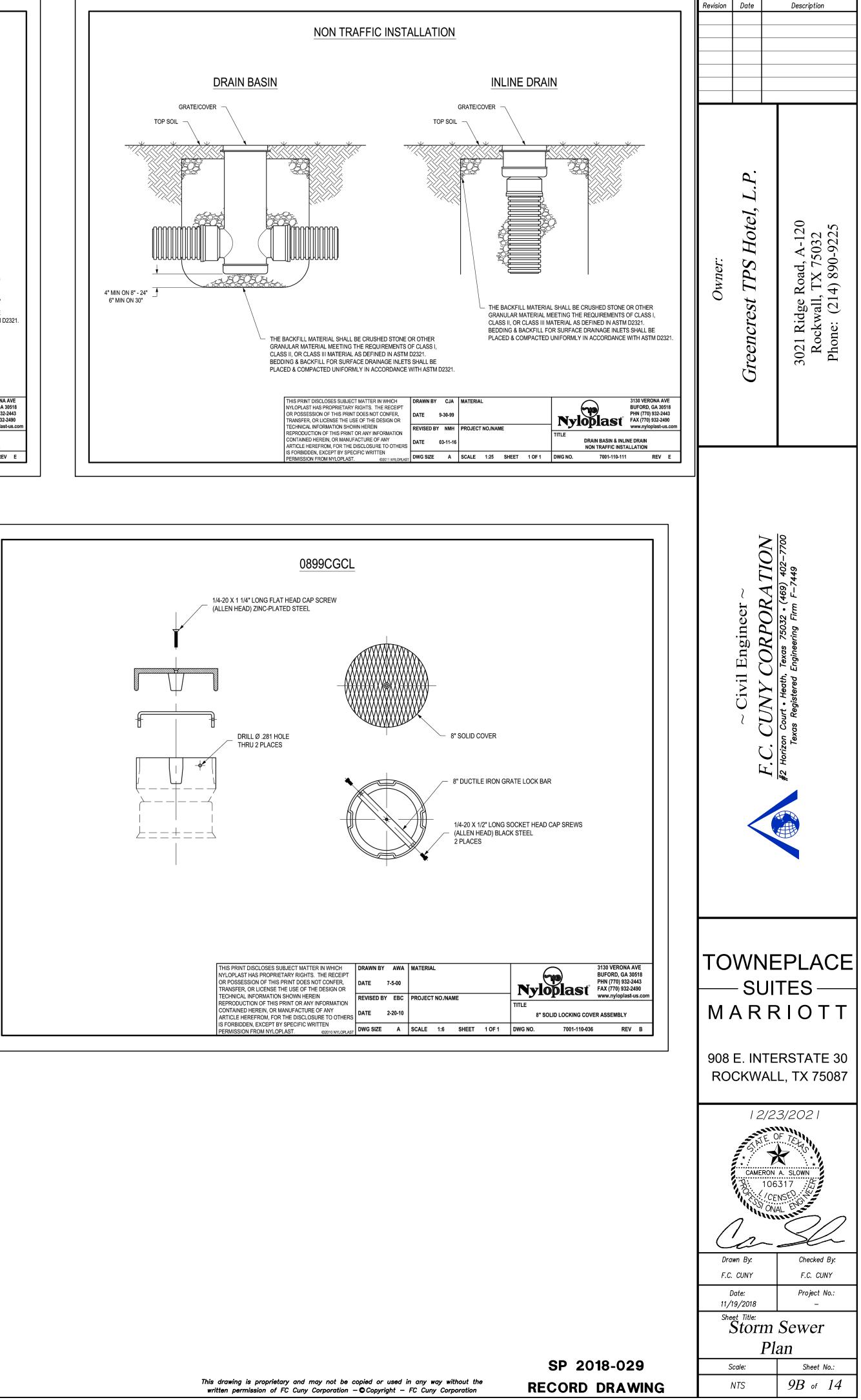


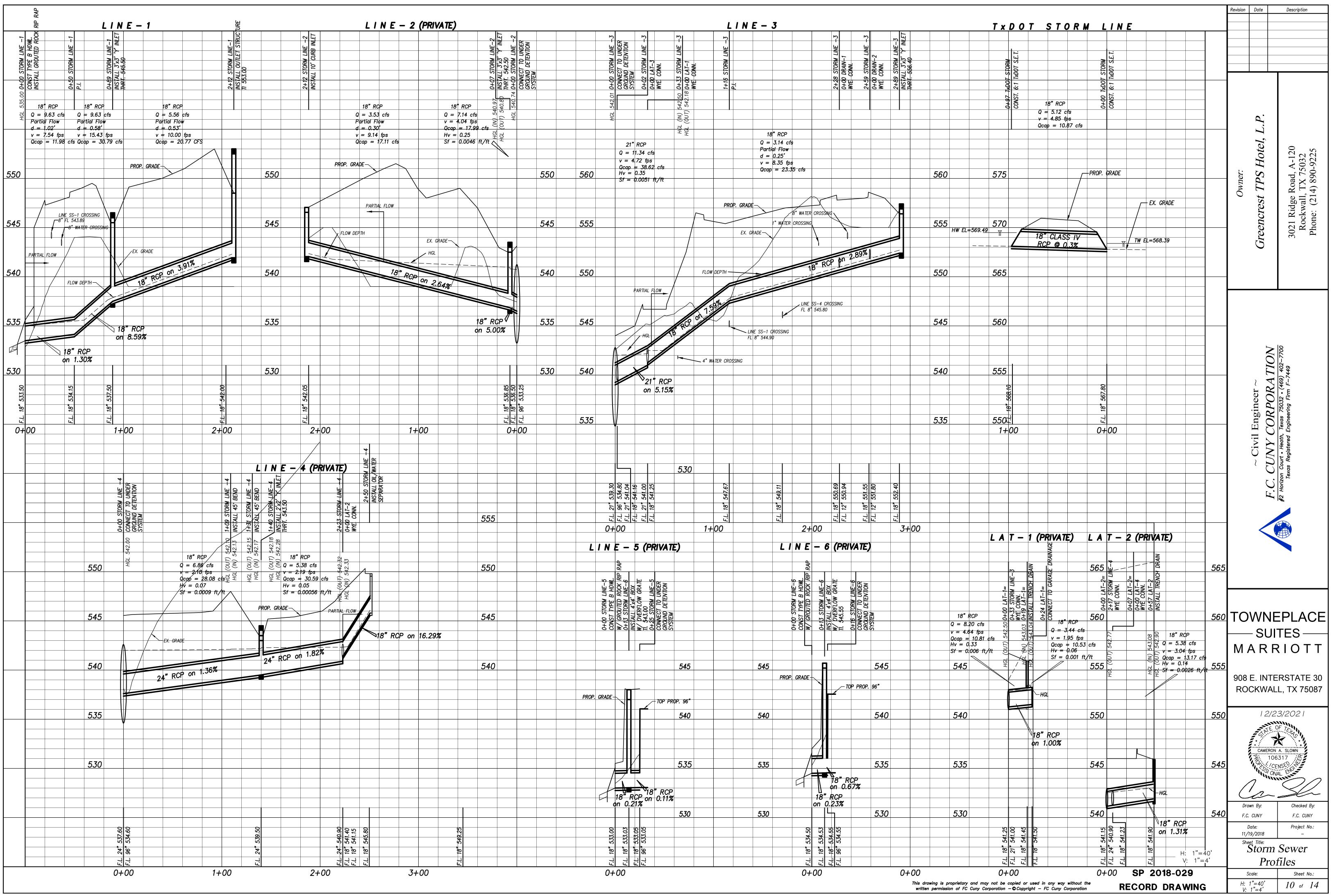


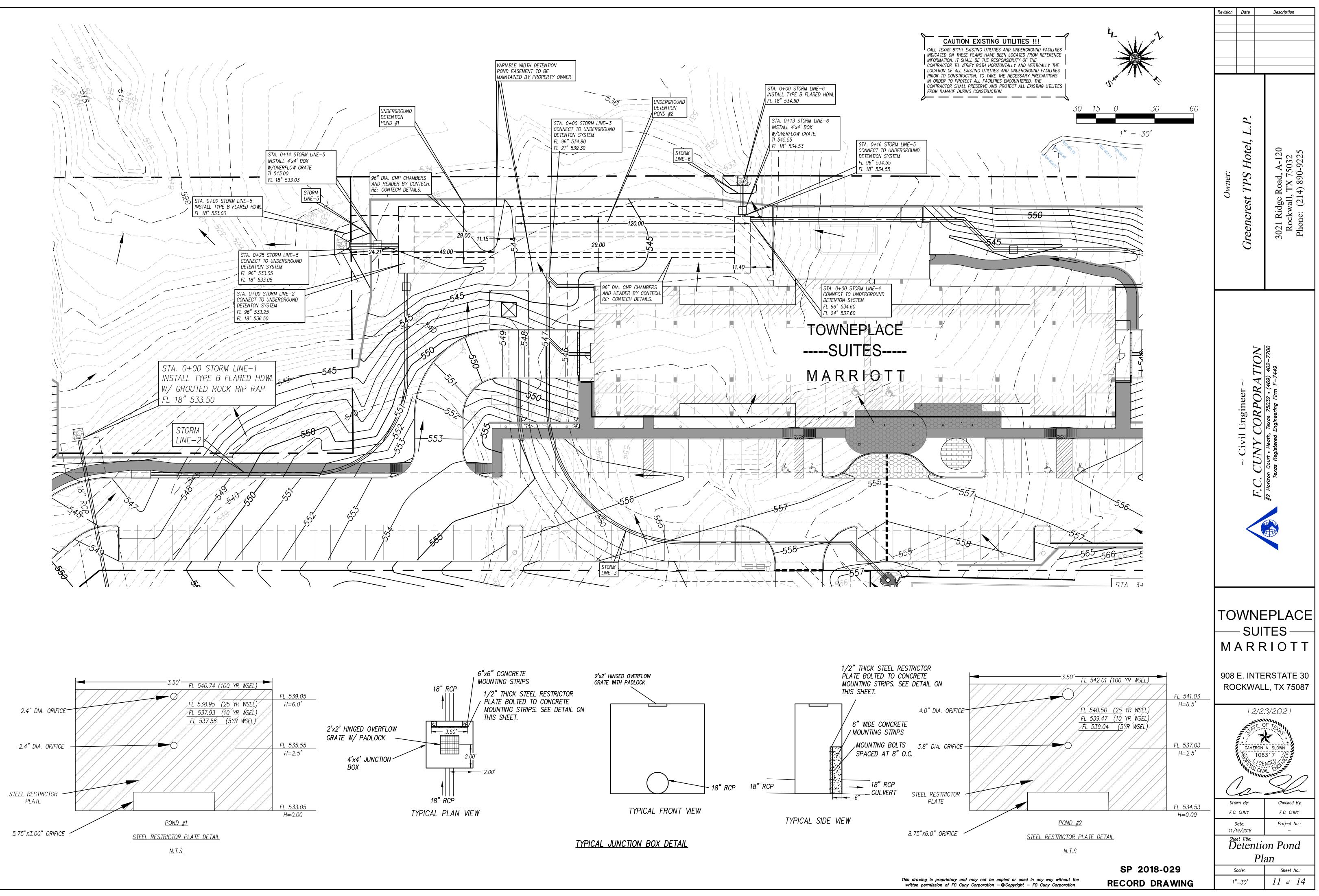



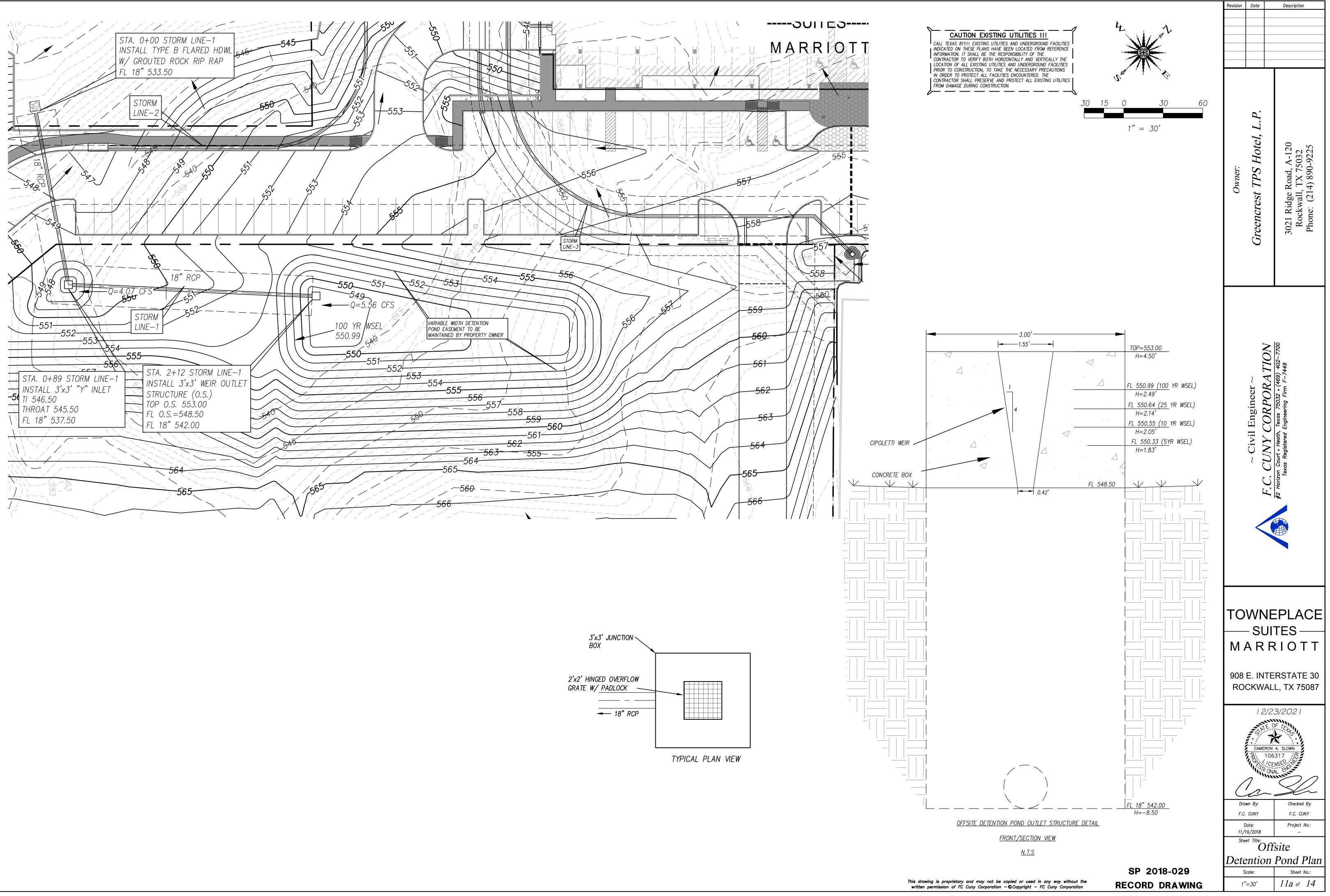



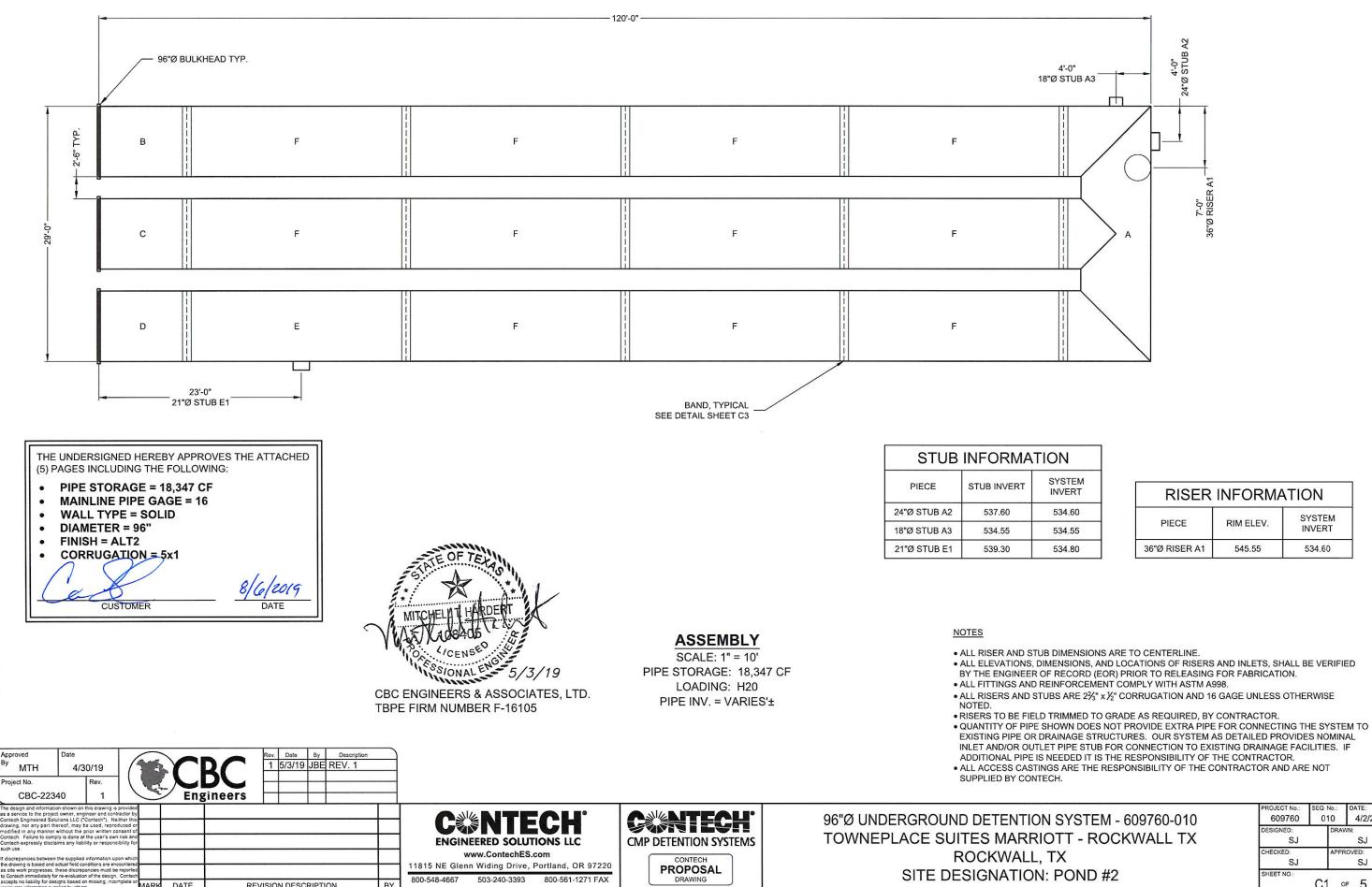


|           |                  |                 |                |           |         |                     |              |            |              |           |                  |                   |         |           |          |                    |               |               |                  |                     |             |               | 1               |          |          |             |            |             |                  |           |     |
|-----------|------------------|-----------------|----------------|-----------|---------|---------------------|--------------|------------|--------------|-----------|------------------|-------------------|---------|-----------|----------|--------------------|---------------|---------------|------------------|---------------------|-------------|---------------|-----------------|----------|----------|-------------|------------|-------------|------------------|-----------|-----|
|           |                  |                 |                |           |         |                     |              | Conduit ]  | Prope rtie s |           |                  |                   |         |           |          |                    |               | Incremental D | Drainage Are     | e a                 |             |               |                 |          |          |             |            |             |                  |           |     |
| System ID | Collection       | n Point Station | Distance #     | of Sel    |         | Conduit<br>Material | Conduit      | Wetted     | Hydraulic    | Manning's | Flowline         | Flowline          | Pipe    | Inlet     | Drainage | Run-off            | Incremental   | Accumulated   | Upstre am        | Design Storm        | Intensity   | y Storm Water | Pipe Capacity   | Partial  | Velocity | Time in     | Friction   | Friction    | J                | HGL       |     |
|           | Upstream         | Downstream      | Bar<br>Between |           | pe Size | Туре                | Area of Flow | Perimeter  | Radius       | n value   | Elevation        | Elevation         | Slope S | S ID      | Area "A" | Coefficient        | "CA"          | "CA"          | Tc               | <b>F</b> re que ncy | "I"         | Runoff        | Q(cap)          | Flow     | In Sewer | Conduit     | t Slope Sf | Head Loss   | Elevation        | Elevation | V   |
|           | Station          | Station         | Points         |           | (in)    |                     | (ft^2)       | (ft)       | (ft)         |           |                  | <b>Downstream</b> | -       |           | (Acres)  | "C"                |               |               |                  | (years)             | (in/hr)     |               | cfs             | (YES/NO) |          | (min)       |            | (ft)        | <b>Upstre am</b> |           | 1   |
| LINE-1    | 0+50.00          | 0+00.00         | 50.00          | L         | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 534.15           | 533.50            |         | INLET 2   | 1.40     | 0.35               | 0.49          | 1.16          | 10.19            | 100                 | 8.30        | 9.62          | 12.01           | YES      | 7.54     | 0.11        | 0.00833    | 0.417       | 538.00           | 535.00    |     |
| LINE-1    | 0+89.00          | 0+50.00         | 39.00          | l         | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 537.50           | 534.15            | 0.0859  | INLET 2   | 1.40     | 0.35               | 0.49          | 1.16          | 0.00             | 100                 | 8.30        | 9.62          | 30.87           | YES      | 15.43    | 0.04        | 0.00833    | 0.325       | 538.00           | 535.00    |     |
| LINE-1    | 2+04.00          | 0+89.00         | 115.00         | L         | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 542.00           | 534.15            | 0.0683  | B INLET 3 | 1.91     | 0.35               | 0.67          | 0.67          | 10.00            | 100                 | 8.30        | 5.55          | 27.52           | YES      | 10.00    | 0.19        | 0.00278    | 0.319       | 542.30           | 538.00    |     |
|           |                  |                 |                |           |         |                     |              | Conduit    | Properties   |           |                  |                   |         |           |          |                    |               | Incremental D | )rainage Ar      | еа                  |             |               |                 | 1        |          | <del></del> |            | <u> </u>    | <u> </u>         | <u> </u>  | Т   |
|           |                  |                 | #              | of        |         | Conduit             |              |            |              |           |                  |                   |         |           |          |                    |               |               |                  |                     |             |               |                 |          |          |             |            |             | ,                | HGL       | t   |
| System ID | Collection       | n Point Station | Bar            | rels      |         | <b>Material</b>     | Conduit      | Wetted     | Hydraulic    | Manning's | Flowline         | Flowline          | Pipe    |           | Drainage | Run-off            | Incremental   |               | <b>Upstre</b> am | Design Storm        | Intensity   | y Storm Water | Pipe Capacity   | 1        |          |             |            |             |                  |           | _   |
|           | <b>Upstre am</b> |                 | Between        | Pip       | pe Size | Туре                | Area of Flow | Perimeter  |              | n value   | Elevation        | Elevation         | Slope S |           | Area "A" | Coefficient        | "CA"          | "CA"          | Tc               | <b>Frequency</b>    | "I"         | Runoff        | Q(cap)          | Flow     |          | · Conduit   |            |             |                  |           | - 1 |
|           | Station          | Station         | Points         |           | (in)    |                     | (ft^2)       | (ft)       | (ft)         |           | Upstre am        | Downstre am       | (ft/ft) |           | (Acres)  | "C"                |               |               |                  | (years)             | (in/hr)     |               | cfs             | (YES/NO) |          | (min)       | · · ·      | (ft)        | Upstre am        |           | _   |
| LINE-2    | 0+07.00          | 0+00.00         | 7.00           |           | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 536.85           | 536.50            |         | INLET 8   |          | 0.9                | 0.37          | 0.73          | 11.71            | 100                 | 9.80        | 7.14          | 23.55           | NO       | 4.04     | 0.03        | 0.00460    |             | 540.77           | 540.74    | +   |
| LINE-2    | 2+12.00          | 0+07.00         | 205.00         |           | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 542.05           | 536.85            | 0.0254  | 4 INLET 1 | 0.40     | 0.9                | 0.36          | 0.36          | 10.00            | 100                 | 9.80        | 3.53          | 16.77           | YES      | 2.00     | 1.71        | 0.00112    | 0.230       | 542.30           | 540.95    |     |
|           |                  |                 |                |           |         |                     |              |            |              |           |                  |                   |         |           |          |                    |               |               |                  |                     |             |               |                 |          |          |             |            |             |                  |           |     |
|           |                  |                 | -              |           |         |                     | 1            | Conduit    | Prope rtie s |           |                  | 1                 |         |           |          | 1                  |               | Incremental I | Drainage Ar      | re a                |             |               |                 |          |          |             |            |             |                  |           |     |
|           |                  |                 | #              | of        |         | Conduit             |              |            |              |           |                  |                   |         |           |          |                    |               |               |                  |                     |             |               |                 |          |          |             |            |             | ţ                | HGL       |     |
| System ID |                  | n Point Station | Distance       | rels Se   |         | M ate rial          | Conduit      | Wetted     |              | 0         |                  | Flowline          | Pipe    |           | Drainage |                    | Incre me ntal |               | Upstre an        |                     | 1 Intensity | ·             | · Pipe Capacity |          | Velocity |             | 1 Friction |             |                  |           | _   |
|           | <b>Upstre am</b> |                 | Between        | Pip       | pe Size | Туре                | Area of Flow |            |              | n value   | Elevation        | Elevation         | Slope S |           | Area "A" |                    | "CA"          | "CA"          | Tc               | <b>Frequency</b>    | "I"         | Runoff        | Q(cap)          | Flow     | In Sewer |             |            | f Head Loss |                  |           | _   |
|           | Station          | Station         | Points         |           | (in)    |                     | (ft^2)       | (ft)       | (ft)         |           | Ups tre am       | Downstre am       | ~ /     |           | (Acres)  | "C"                |               |               |                  | (years)             | (in/hr)     | /             | cfs             | (YES/NO) |          | (min)       |            | (ft)        | <b>Upstre am</b> |           | É   |
| LINE-3    | 0+33.00          | 0+00.00         | 33.00          |           | 21      | RCP                 | 2.41         | 5.50       | 0.438        | 0.013     | 541.00           | 539.30            | 0.0515  |           | 0.00     | 0.90               | 0.00          | 1.16          | 12.40            | 100                 | 9.80        | 11.34         | 36.06           | NO       | 4.72     | 0.12        |            |             | 542.18           | 542.01    | _   |
| LAT-1     | 0+19.00          |                 | 19.00          |           | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 541.45           | 541.25            | -       | 5 INLET 4 |          | 0.90               | 0.49          | 0.84          | 10.04            | 100                 | 9.80        | 8.20          | 10.81           | YES      | 4.64     | 0.07        | 0.00606    |             | 542.61           | 542.50    | 4   |
| LAT-1     | 0+24.00          | 0+19.00         | 5.00           |           | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 541.50           | 541.45            |         | 0 INLET 4 |          | 0.90               | 0.35          | 0.35          | 10.00            | 100                 | 9.80        | 3.44          | 10.53           | YES      | 1.95     | 0.04        |            |             | 543.04           | 543.03    | 4   |
| LINE-3    | 2+63.00          | 0+33.00         | 230.00         |           | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 551.80           | 541.00            | 0.0470  | 1 INLET 5 | 0.00     | 0.90               | 0.00          | 0.32          | 10.24            | 100                 | 9.80        | 3.14          | 22.82           | YES      | 1.78     | 2.16        |            |             | 552.10           | 542.50    | +   |
| LINE-3    | 2+89.00          | 2+63.00         | 26.00          | 1         | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 552.40           | 551.80            | 0.0231  | I INLEI 5 | 5 0.36   | 0.90               | 0.32          | 0.32          | 10.00            | 100                 | 9.80        | 3.14          | 16.00           | YES      | 1.78     | 0.24        | 0.00089    | 0.023       | 552.14           | 552.12    |     |
|           |                  |                 |                |           |         |                     |              | Conduit    | Properties   |           |                  |                   |         |           |          |                    |               | Incremental I | Drainage Ar      | ea                  |             |               |                 |          |          |             |            | Т           | Т                |           | Т   |
|           |                  |                 |                |           |         | Conduit             |              |            |              |           |                  |                   |         |           |          |                    |               |               | 0                |                     |             |               |                 |          |          | +           |            |             |                  |           |     |
| System ID | Collectio        | n Point Station | Distance #     | of Se     | elected | M ate rial          | Conduit      | Wetted     | Hydraulic    | Manning's | Flowline         | Flowline          | Pipe    | Inlet     | Drainage | Run-off            | Incre me ntal | Accumulated   | Upstre an        | 1 Design Storm      | Intensity   | y Storm Water | Pipe Capacity   | Partial  | Velocity | Time ir     | Friction   | Friction    | ,                | HGL       |     |
| -         | <b>Upstre</b> am | n Downstre am   | Between Bar    | re Is Pip | pe Size | Type                | Area of Flow | Perimeter  | Radius       | n value   | Elevation        | Elevation         | Slope S | S ID      | Area "A" | <b>Coefficient</b> | "CA"          | "CA"          | Tc               | Frequency           | "I"         | Runoff        | Q(cap)          | Flow     | In Sewer | Condui      | t Slope Sf | f Head Loss | Elevation        | Elevation |     |
|           | Station          | Station         | Points         |           | (in)    |                     | (ft^2)       | (ft)       | (ft)         |           | <b>Upstre am</b> | Downstre am       |         |           | (Acres)  | "C"                |               |               |                  | (years)             | (in/hr)     | Q (cfs)       | cfs             | (YES/NO) |          |             |            |             | <b>Upstre am</b> |           | []` |
| LINE-4    | 1+09.00          | 0+00.00         | 109.00         | 1         | 24      | RCP                 | 3.14         | 6.28       | 0.500        | 0.013     | 539.08           | 537.60            | 0.0136  | 6         | 0.00     | 0.90               | 0.00          | 0.70          | 11.04            | 100                 | 9.80        | 6.86          | 26.43           | NO       | 2.18     |             |            |             | 542.11           | 542.01    | T   |
| LINE-4    | 1+31.00          | 1+09.00         | 22.00          | 1         | 24      | RCP                 | 3.14         | 6.28       | 0.500        | 0.013     | 539.38           | 539.08            | 0.0136  | 6         | 0.00     | 0.90               | 0.00          | 0.70          | 10.88            | 100                 | 9.80        | 6.88          | 26.49           | NO       | 2.19     | 0.17        | 0.00092    | 0.020       | 542.16           | 542.14    |     |
| LINE-4    | 1 + 40.00        | 1+31.00         | 9.00           | 1         | 24      | RCP                 | 3.14         | 6.28       | 0.500        | 0.013     | 539.50           | 539.38            | 0.0133  | 3 INLET 7 | 7 0.17   | 0.90               | 0.15          | 0.70          | 10.81            | 100                 | 9.80        | 6.88          | 26.19           | NO       | 2.19     | 0.07        | 0.00092    | 0.008       | 542.19           | 542.18    |     |
| LINE-4    | 2+23.00          | 1+40.00         | 83.00          | 1         | 24      | RCP                 | 3.14         | 6.28       | 0.500        | 0.013     | 540.90           | 539.50            | 0.0169  | 9         | 0.00     | 0.90               | 0.00          | 0.55          | 10.00            | 100                 | 9.80        | 5.38          | 29.46           | NO       | 1.71     | 0.81        | 0.00056    | 0.047       | 542.33           | 542.29    |     |
| LAT-2     | 0+57.00          |                 | 57.00          | 1         | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 541.90           | 541.15            |         | 2 INLET 6 |          | 0.90               | 0.55          | 0.55          | 10.00            | 100                 | 9.80        | 5.38          | 12.08           | YES      | 3.04     | 0.31        |            |             | 542.50           | 542.36    | 4   |
| LINE-4    | 2+50.00          | 2+23.00         | 27.00          | 1         | 18      | RCP                 | 1.77         | 4.71       | 0.375        | 0.013     | 545.80           | 541.40            | 0.1630  | 0         | 0.00     | 0.90               | 0.00          | 0.00          | 10.00            | 100                 | 9.80        | 0.00          | 42.52           | YES      | 0.00     | 0.00        | 0.00000    | 0.000       | 542.68           | 542.68    |     |
|           |                  |                 |                |           |         |                     |              |            |              |           |                  |                   |         |           |          |                    |               |               |                  |                     |             |               |                 |          |          |             |            |             |                  |           |     |
|           |                  | Loc             | ation          |           |         |                     |              | Area Runof | f            |           |                  |                   |         |           |          |                    | Gutter Flow   |               |                  |                     |             | Gutt          | er Flow         |          |          |             |            | Inlets Ca   | apacity          |           |     |
|           |                  |                 |                |           |         |                     |              |            |              |           |                  |                   | ł       |           |          |                    |               |               |                  |                     |             |               | 1 Nov. 11 / 7   |          |          | Depressed   | Gutter     | Section Bey |                  |           |     |


| LINE-4 | 2+50.00 | 0 2+23    | .00 27.  | 00 1   | 18     | ŀ    | RCP 1        | .77 4.7       | 0.37        | 0.01    | .3 545   | .80 541    | .40 0.16            | 30       | 0.0       | 0 0.        | .90 0        | .00 0.0                    | 00 10.  | 00      | 100 9.8                    | 0 0       | 0.00 4                     | 2.52 YH                      | ES 0.00                 | 0.00               | ) 0.000   | 0.00           | 00 542.0          | 68 542           | 2.68                             |
|--------|---------|-----------|----------|--------|--------|------|--------------|---------------|-------------|---------|----------|------------|---------------------|----------|-----------|-------------|--------------|----------------------------|---------|---------|----------------------------|-----------|----------------------------|------------------------------|-------------------------|--------------------|-----------|----------------|-------------------|------------------|----------------------------------|
|        |         |           |          |        |        |      |              |               |             |         |          |            |                     |          |           |             |              |                            |         |         |                            |           |                            |                              |                         |                    |           |                |                   |                  |                                  |
|        |         |           | Location |        |        |      |              | Area F        | Runoff      |         |          |            |                     |          |           |             | Gutter       | Flow                       |         |         |                            |           | Gutter Flow                |                              |                         |                    |           | Inle           | ets Capacity      |                  |                                  |
|        |         |           | Loodion  |        |        |      |              | Time of       |             |         |          | 1          |                     |          |           |             |              |                            | Depres  | ssion   | Depth of Gu                | tter Flow |                            | /idth/ Spread                | N.4 A.11                |                    | ed Gutter | Section        | n Beyond          | Conv             | iveyance                         |
| Inle   | et ID   |           |          |        | Design |      |              |               | _           |         |          | UpstreamBy | Total Gutter        | Thorough | On-Grade/ |             |              | -                          |         |         |                            |           |                            |                              | Max Allow<br>Flow based | Sec                | wetted    |                | ression<br>Wetted | Depression       | Section                          |
|        | /       | Alignment | Station  | Offset | Freq   | C    | AREA ID      | Concentration | Intensity I | Area A  | Runoff Q | pass C*A   | Flow Q <sub>a</sub> | are Type | Sag       | Manning's r | Long Slope S | Cross Slope S <sub>X</sub> | Depth a | Width W | (allow) y <sub>allow</sub> | (actual)  | (allow) T <sub>allow</sub> | (actual) T <sub>actual</sub> | on Ponding              | Area               | Perimeter | Area           | Perimeter         | Section          | Beyond                           |
|        |         |           |          |        |        |      |              | Тс            |             |         |          |            |                     |          |           |             |              |                            | Depine  |         | (anon) Jallow              | Yactual   | (anot) railow              | (actual) factual             | Q <sub>max Gutter</sub> | A <sub>W</sub>     | Pw        | A <sub>0</sub> | P <sub>0</sub>    | Kw               | K <sub>0</sub>                   |
|        |         |           |          |        | (yr)   |      |              | (min)         | (in/hr)     | (acres) | (cfs)    | (cfs)      | (cfs)               |          |           |             | (ft/ft)      | (ft/ft)                    | (ft)    | (ft)    | (ft)                       | (ft)      | (ft)                       | (ft)                         | (cfs)                   | (ft <sup>2</sup> ) | (ft)      | (ft²)          | (ft)              | (cfs)            | (cfs)                            |
| (      | (1)     | (2)       | (3)      | (4)    | (5)    | (6)  | (7)          | (8)           | (9)         | (10)    | (11)     | (12)       | (13)                | (14)     | (15)      | (16)        | (17)         | (18)                       | (19)    | (20)    | (21)                       | (22)      | (23)                       | (24)                         | (25)                    | (26)               | (27)      | (28)           | (29)              | (30)             | (31)                             |
|        | 1       | LINE 2    | 2+09.00  | 0      | 100    | 0.9  | 2            | 10            | 9.8         | 0.40    | 3.53     | 0          | 3.53                | LOCAL    | SAG       | 0.0175      | 0.01         | 0.033                      | 0.5     | 2       | 0.33                       | 0.29      | 10                         | 8.73                         | 5.04                    | 1.01               | 2.08      | 0.75           | 6.73              | 53.00            | 14.64                            |
|        | 2       | LINE 1    | 0+89.00  | 0      | 100    | 0.35 | OS-1         | 20            | 8.3         | 1.40    | 4.07     | 0          | 4.07                | LOCAL    | DROP      | 0.0175      | 0.01         | 0.033                      | 0.5     | 2       | 1.00                       | 1.00      | N/A                        | N/A                          | N/A                     | N/A                | N/A       | N/A            | N/A               | N/A              | N/A                              |
|        | 3       | LINE 1    | 2+04.00  | 0      | 100    | 0.9  | OS-3         | 10            | 9.8         | 0.69    | 6.07     | 0          | 6.07                | LOCAL    | DROP      | 0.0175      | 0.01         | 0.033                      | 0.5     | 2       | 1.00                       | 1.00      | N/A                        | N/A                          | N/A                     | N/A                | N/A       | N/A            | N/A               | N/A              | N/A                              |
|        | 4       | LAT-1     | 0+19.00  | 0      | 100    | 0.9  | 3            | 10            | 9.8         | 0.54    | 4.76     | 0          | 4.76                | LOCAL    | TRENCH    | 0.0175      | 0.01         | 0.033                      | 0.5     | 2       | 0.79                       | 0.32      | 24                         | 9.77                         | 52.07                   | 1.08               | 2.08      | 0.99           | 7.77              | 59.14            | 21.47                            |
|        | 5       | LINE 3    | 2+89.00  | 0      | 100    | 0.9  | OS-3.3, 0S-1 | 10            | 9.8         | 0.36    | 3.14     | 0          | 3.14                | LOCAL    | DROP      | 0.0175      |              | 0.033                      | 0.5     | 2       | 1.00                       | 1.00      | N/A                        | N/A                          | N/A                     | N/A                | N/A       | N/A            | N/A               | N/A              | N/A                              |
|        | 6       | LAT-2     | 0+48.00  | 0      | 100    | 0.9  | 4            | 10            | 9.8         | 0.61    | 5.38     | 0.00       | 5.38                | LOCAL    |           |             | 0.01         | 0.033                      | 0.5     | 2       | 0.79                       | 0.34      | 24                         | 10.22                        | 52.07                   | 1.11               | 2.08      | 1.12           | 8.22              | 61.92            | 25.01                            |
|        | 7       | LINE 4    | 1+40.00  | 0      | 100    | 0.9  | 5            | 10            | 9.8         | 0.17    | 1.50     | 0.00       | 1.50                | LOCAL    | DROP      | 0.0175      | 0.01         | 0.033                      | 0.5     | 2       | 1.00                       | 1.00      | N/A                        | N/A                          | N/A                     | N/A                | N/A       | N/A            | N/A               | N/A              | N/A                              |
|        | 8       | LINE 2    | 0+12.00  | 0      | 100    | 0.9  | 7            | 10            | 9.8         | 0.41    | 3.62     | 0          | 3.62                | LOCAL    | DROP      | 0.0175      | 0.01         | 0.033                      | 0.5     | 2       | 1.00                       | 1.00      | N/A                        | N/A                          | N/A                     | N/A                | N/A       | N/A            | N/A               | N/A              | N/A                              |
|        |         |           |          |        |        |      |              |               | DROP INLET  |         |          |            |                     |          |           |             |              |                            |         |         |                            |           |                            |                              |                         |                    |           |                |                   |                  |                                  |
|        |         |           |          |        |        |      |              |               | DROP INLET  |         |          |            |                     |          |           |             |              |                            |         |         |                            |           |                            |                              |                         |                    |           |                |                   |                  |                                  |
|        |         |           |          |        |        |      |              |               |             |         |          |            |                     |          |           |             |              |                            |         |         |                            |           |                            |                              |                         |                    |           |                |                   | This d<br>writte | drawing is pro<br>ten permission |


|                                    |                                                       |                                                                    |                                                         |                                                                                           |                                                          |                                                           |                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                |                                                                | Revision Dat                                                                 |                                   | Description                                                                                        |
|------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------|
|                                    |                                                       |                                                                    |                                                         |                                                                                           |                                                          |                                                           |                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                |                                                                | Owner:<br>Crossoct TDC Hotal I D                                             |                                   | 3021 Ridge Road, A-120<br>Rockwall, TX 75032<br>Phone: (214) 890-9225                              |
|                                    | 1.55                                                  | g V2^2/2                                                           | g Junc                                                  | falculations<br>tion Type                                                                 | Coefficient<br>Kj<br>0.37                                | HL<br>0.33                                                | HGL<br>538.33                                                                                                                             | Top of Curb<br>Elevation<br>546.50                                                                                                                                                                                                                            | Upstream<br>10.85                                              | HGL Depth<br>Below T/C<br>8.17                                 | $\sim$ Civil Engineer $\sim$                                                 | ATTC                              | #2 Horizon Court • Heath, Texas 75032 • (469) 402–7700<br>Texas Registered Engineering Firm F–7449 |
| n                                  | 1.55<br>V1^2/2g<br>0.06                               | 3.70<br>1.55<br>H<br>g V2^2/2/<br>0.25<br>0.06                     | e adloss C<br>g Junc                                    | " INLET<br>" INLET<br>dalculations<br>tion Type<br>" INLET<br>urb Inlet                   | 1.25<br>1.25<br>Coefficient<br>Kj<br>1.25<br>1.25        | 4.62<br>1.94<br>He adLo<br>HL<br>0.18<br>0.08             | 542.62<br>544.24<br>ss Design<br>HGL<br>540.95<br>542.38                                                                                  | 546.50<br>550.50<br>Top of Curb<br>Elevation<br>543.00<br>547.05                                                                                                                                                                                              | 7.50<br>7.00<br>Pipe Cover<br>Upstream<br>4.65<br>3.50         | 3.88<br>6.26<br>HGL Depth<br>Below T/C<br>2.05<br>4.67         |                                                                              |                                   |                                                                                                    |
| m                                  | - V1^2/2<br>0.05<br>0.06<br>0.05                      | H<br>g V2^2/2<br>0.35<br>0.33<br>0.06<br>0.05<br>0.05              | g Jun<br>45<br>Tre<br>Buil<br>45                        | Calculations<br>ction Type<br>deg wye<br>nch Drain<br>ding Conn.<br>deg. bend<br>'' INLET | Coefficient<br>Kj<br>0.5<br>1.25<br>1.25<br>0.37<br>1.25 | He adLo<br>HL<br>0.32<br>0.42<br>0.07<br>0.02<br>0.06     | 543.03<br>543.11<br>552.12                                                                                                                | Top of Curb<br>Elevation<br>544.00<br>545.90<br>546.00<br>558.60<br>556.40                                                                                                                                                                                    | Pipe Cover<br>Upstream<br>1.25<br>2.95<br>3.00<br>5.30<br>2.50 | HGL Depth<br>Below T/C<br>1.50<br>2.87<br>2.89<br>6.48<br>4.20 |                                                                              |                                   | EPLACE<br>TES ——<br>RIOTT                                                                          |
| <u>n</u>                           | V1^2/2<br>0.07<br>0.07<br>0.05<br>0.00                | H<br>g V2^2/2<br>0.07<br>0.07<br>0.07<br>0.05<br>0.14              | 2g June<br>45<br>45<br>''Y<br>45                        | Calculations<br>ction Type<br>deg. bend<br>deg. bend<br>'' INLET<br>deg wye<br>nch Drain  | Coefficient<br>Kj<br>0.37<br>0.37<br>1.25<br>0.5<br>1.25 | He adLo<br>HL<br>0.03<br>0.03<br>0.09<br>0.02<br>0.18     | oss Design<br>HGL<br>542.14<br>542.18<br>542.29<br>542.36<br>542.68                                                                       | Top of Curb<br>Elevation<br>548.00<br>544.70<br>544.50<br>548.00<br>545.90                                                                                                                                                                                    | Pipe Cover<br>Upstream<br>6.92<br>3.32<br>3.00<br>5.10<br>2.50 | HGL Depth<br>Below T/C<br>5.86<br>2.52<br>2.21<br>5.64<br>3.22 | ROCK                                                                         | WAL                               | RSTATE 30<br>L, TX 75087<br>3/202                                                                  |
| key<br>key<br>k                    | vond                                                  | Ratio of<br>Depressio<br>n flow to<br>Total Flow<br>E <sub>0</sub> | Equivelent<br>Cross-                                    | Separator<br>Inlets C                                                                     | 0<br>apacity<br>Ilet Length<br>Req'd Actua               | 0.10<br>0.00                                              | Inlet<br>Capacity                                                                                                                         | Flow<br>Q <sub>bypass</sub><br>(cfs)                                                                                                                                                                                                                          | 2.50<br>t By-pass<br>X*A To                                    | 3.22<br>7.12                                                   | Drawn By                                                                     | 106<br>                           | A. SLOWN<br>317<br>NSEP<br>AL ENSE<br>Checked By:                                                  |
| 14<br>N<br>21<br>N<br>25<br>N<br>N | .64<br>/A<br>/A<br>.47<br>/A<br>.01<br>/A<br>/A<br>/A | 0.78<br>N/A<br>0.73<br>N/A<br>0.71<br>N/A<br>N/A<br>N/A            | 0.23<br>N/A<br>0.22<br>N/A<br>0.21<br>N/A<br>N/A<br>N/A | 6.33<br>3.73<br>5.56<br>5.00<br>2.88<br>6.00<br>1.37<br>3.31<br>copied or used            | in any way with                                          | 10 8 8 24 8 24 8 24 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11.06         8.73         8.73         24.00         8.73         24.00         8.73         8.73         8.73         8.73         8.73 | N/A         N           N/A         N | V/A V/A                                                        | V/A<br>V/A<br>V/A<br>V/A<br>V/A<br>V/A<br>V/A                  | F.C. CUN<br>Date:<br>11/19/20<br>Sheet Tit.<br><b>StC</b><br>Scale:<br>1"=30 | <sup>18</sup><br>he:<br>Drm<br>Pl | F.C. CUNY<br>Project No.:<br>-<br>Sewer<br>an<br>Sheet No.:<br>9A of 14                            |
| ті<br>—                            | ssion of l                                            | FC Cuny C                                                          | orporation                                              | – Copyright -                                                                             | - FC Cuny Corp                                           | poration                                                  | 1                                                                                                                                         | RECORE                                                                                                                                                                                                                                                        | Ο ΓΑΥ                                                          | VING                                                           | , =50                                                                        |                                   |                                                                                                    |







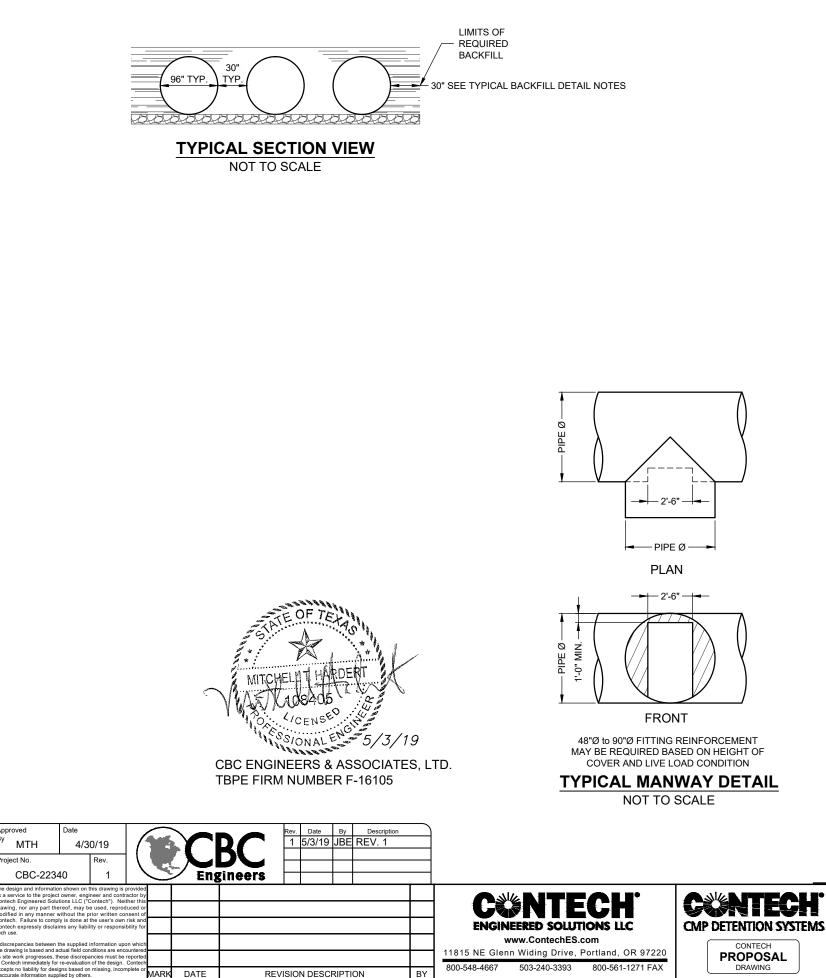


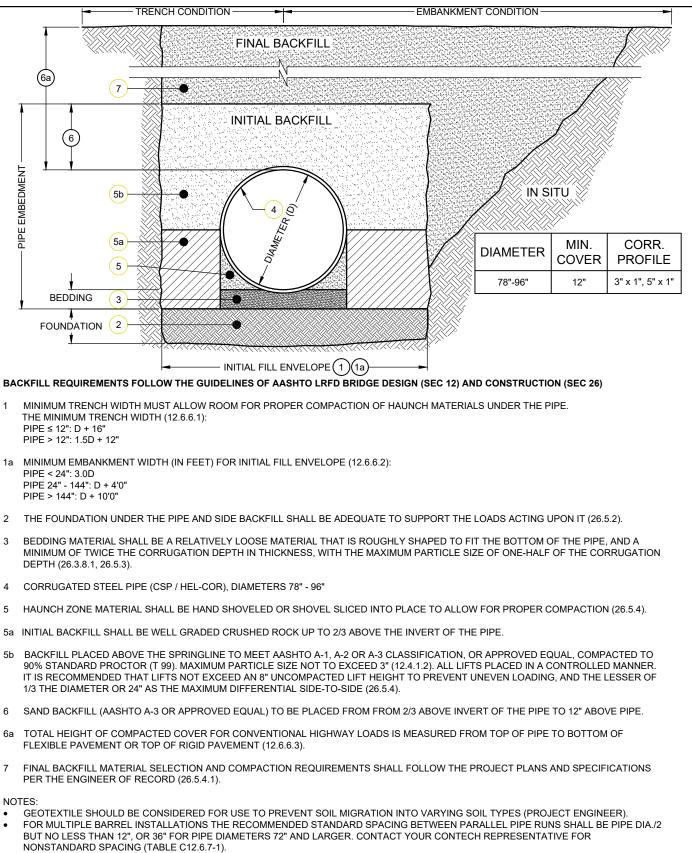





MARK DATE

REVISION DESCRIPTION

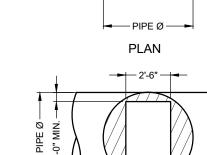

BY


| PROJECT No.:<br>609760                               | SEQ. No.:<br>010 | DATE:<br>4/2/2019 |  |
|------------------------------------------------------|------------------|-------------------|--|
| DESIGNED:                                            |                  | DRAWN:<br>SJ      |  |
| CHECKED: APPROVED:<br>SJ SJ<br>SHEET NO.:<br>C1 of 5 |                  |                   |  |
|                                                      |                  |                   |  |

• ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED  $\bullet$  ALL RISERS AND STUBS ARE 2½" x½" CORRUGATION AND 16 GAGE UNLESS OTHERWISE

| EM<br>RT |  |
|----------|--|
| 60       |  |
| 55       |  |
| 80       |  |
|          |  |

| RISER         | INFORMA   | TION             |
|---------------|-----------|------------------|
| PIECE         | RIM ELEV. | SYSTEM<br>INVERT |
| 36"Ø RISER A1 | 545.55    | 534.60           |





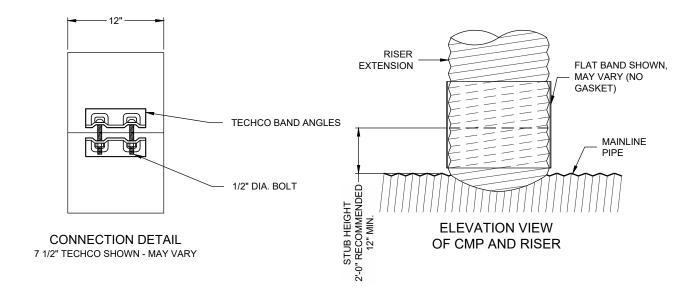

- 3

#### NOTES:

96"Ø UNDERGROUND DETENTION SYSTEM - 609760-010 **TOWNEPLACE SUITES MARRIOTT - ROCKWALL TX** ROCKWALL, TX SITE DESIGNATION: POND #2



48"Ø to 90"Ø FITTING REINFORCEMENT MAY BE REQUIRED BASED ON HEIGHT OF COVER AND LIVE LOAD CONDITION


#### **TYPICAL MANWAY DETAIL**

CONTECH

## TYPICAL BACKFILL DETAIL

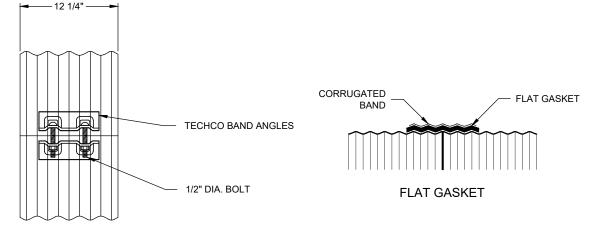
NOT TO SCALE

| PROJECT No.: | SEQ. I | No.:   | DATE:    |  |
|--------------|--------|--------|----------|--|
| 609760       | 01     | 10     | 4/2/2019 |  |
| DESIGNED:    | -      | DRAWN: |          |  |
| SJ           |        |        | SJ       |  |
| CHECKED:     |        | APPR   | OVED:    |  |
| SJ           |        |        | SJ       |  |
| SHEET NO .:  |        |        |          |  |
| C2 ⁰F 5      |        |        |          |  |



### PLAIN END CMP RISER PIPE

#### GENERAL NOTES:


- 1. DELIVERED BAND STYLE AND FASTENER TYPE MAY VARY BY FABRICATION PLANT.
- 2. JOINT IS TO BE ASSEMBLED PER AASHTO BRIDGE CONSTRUCTION SPECIFICATION SEC 26.4.2.4.
- 3. BAND MATERIAL AND GAGE TO BE SAME AS RISER MATERIAL.
- 4. IF RISER HAS A HEIGHT OF COVER OF 10' OR MORE, USE A SLIP JOINT
- BANDS ARE NORMALLY FURNISHED AS FOLLOWS: 5.
  - 12" THRU 48" 1-PIECE 54" 2-PIECES
- 6. ALL RISER JOINT COMPONENTS WILL BE FIELD ASSEMBLED.
- 7. MANHOLE RISERS IN APPLICATIONS WHERE TRAFFIC LOADS ARE IMPOSED REQUIRE SPECIAL DESIGN CONSIDERATIONS.
- 8. DIMENSIONS SUBJECT TO MANUFACTURING TOLERANCES.

## **12" RISER BAND DETAIL**

NOT TO SCALE



CBC ENGINEERS & ASSOCIATES, LTD. **TBPE FIRM NUMBER F-16105** 

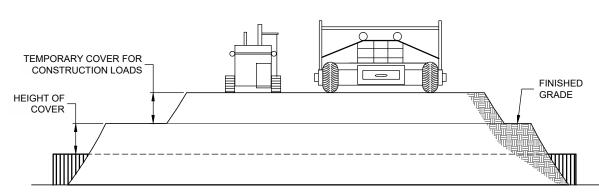


CONNECTION DETAIL 7 1/2" TECHCO

GENERAL NOTES:

- 1. JOINT IS TO BE ASSEMBLED PER AASHTO BRIDGE CONSTRUCTION SPECIFICATION SEC 26.4.2.4.
- 3. BANDS ARE SHAPED TO MATCH THE PIPE-ARCH WHEN APPLICABLE.
- 4. BANDS ARE NORMALLY FURNISHED AS FOLLOWS: • 12" THRU 48" 1-PIECE
  - 54" THRU 96" 2-PIECES •
  - 102" THRU 144" 3-PIECES
- 5. BAND FASTENERS ARE ATTACHED WITH SPOT WELDS, RIVETS OR HAND WELDS.
- ALL CMP IS REROLLED TO HAVE ANNULAR END CORRUGATIONS OF 2 2/3"x1/2" 6.
- 7. DIMENSIONS ARE SUBJECT TO MANUFACTURING TOLERANCES.
- 8. ORDER SHALL DESIGNATE GASKET OPTION, IF REQUIRED (SEE DETAILS ABOVE).




## 2 2/3"x1/2" RIVETED PIPE

2. BAND MATERIALS AND/OR COATING CAN VARY BY LOCATION. CONTACT YOUR CONTECH REPRESENTATIVE FOR AVAILABILITY.

# 5-C BAND DETAIL NOT TO SCALE

| N SYSTEM - 609760-010 |  |
|-----------------------|--|
| OTT - ROCKWALL TX     |  |
| ТХ                    |  |
| : POND #2             |  |

| PROJECT NO.: | SEQ. I | NO.: | DATE:    |  |
|--------------|--------|------|----------|--|
| 609760       | 010    |      | 4/2/2019 |  |
| DESIGNED:    | NED:   |      | /N:      |  |
| SJ           |        |      | SJ       |  |
| CHECKED:     |        | APPR | OVED:    |  |
| SJ           |        |      | SJ       |  |
| SHEET NO .:  |        |      |          |  |
| C3 o⊧ 5      |        |      |          |  |



#### CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

| PIPE SPAN,<br>INCHES | AXLE LOADS<br>(kips) |       |        |         |  |  |  |
|----------------------|----------------------|-------|--------|---------|--|--|--|
| INCITED              | 18-50                | 50-75 | 75-110 | 110-150 |  |  |  |
|                      | MINIMUM COVER (FT)   |       |        |         |  |  |  |
| 12-42                | 2.0                  | 2.5   | 3.0    | 3.0     |  |  |  |
| 48-72                | 3.0                  | 3.0   | 3.5    | 4.0     |  |  |  |
| 78-120               | 3.0                  | 3.5   | 4.0    | 4.0     |  |  |  |
| 126-144              | 3.5                  | 4.0   | 4.5    | 4.5     |  |  |  |

\*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

#### **CONSTRUCTION LOADING DIAGRAM**

NOT TO SCALE

SPECIFICATION FOR CORRUGATED STEEL PIPE-ALUMINIZED TYPE 2 STEEL

#### <u>SCOPE</u>

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE CORRUGATED STEEL PIPE (CSP) DETAILED IN THE PROJECT PLANS.

#### MATERIAL

THE ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE APPLICABLE REQUIREMENTS OF AASHTO M274 OR ASTM A929.

#### PIPE

THE CSP SHALL BE MANUFACTURED IN ACCORDANCE WITH THE APPLICABLE REQUIREMENTS OF AASHTO M36 OR ASTM A760. THE PIPE SIZES, GAGES AND CORRUGATIONS SHALL BE AS SHOWN ON THE PROJECT PLANS.

| ALL FABRICATION OF THE PROD<br>UNITED STATES.                                                                                                                                                                                                                                                                                                                                                                                                                           | DUCT             | SHALL OCCUR WITHIN THE                                                                                 |    | MITCHELLIT HARDERT                                                                                                                                               | <ol> <li>DESIGN LOAD</li> <li>EARTH COVER</li> </ol>        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | MATERIAL SPECIFICATION                                                                                 |    | MASTINE205 1 25                                                                                                                                                  | 4. CONCRETE S                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | NOT TO SCALE                                                                                           |    | /CENSE NY                                                                                                                                                        | 5. REINFORCING                                              |
| Approved         Date           By         MTH         4/30/19           Project No.         Rev.           CBC-22340         1                                                                                                                                                                                                                                                                                                                                         |                  | Rev.     Date     By     Description       1     5/3/19     JBE     REV. 1       Engineers     1     1 |    | CBC ENGINEERS & ASSOCIATES, LTD.<br>TBPE FIRM NUMBER F-16105                                                                                                     | 6. PROVIDE ADE<br>OPENINGS EC<br>HALF EACH S<br>SAME PLANE. |
| The design and information shown on this drawing is provided<br>as a service to the project owner, engineer and contrador by<br>Contech Engineered Solutions LLC ("Contech"). Neither this<br>drawing, nor any part thereof, may be used, reproduced or<br>modified in any manner without the prior written consent of<br>Contech. Failure to comply is done at the user's own risk and<br>Contech expressly disclaims any liability or responsibility for<br>such use. | y<br>r<br>f<br>d |                                                                                                        |    | ENGINEERED SOLUTIONS LLC                                                                                                                                         | 96<br>IS T(                                                 |
| If discrepancies between the supplied information upon which<br>the drawing is based and actual field conditions are encountered<br>as site work progresses, these discrepancies must be reported<br>to Contech immediately for re-evaluation of the design. Contect<br>accepts no liability for designs based on missing, incomplete or                                                                                                                                | d<br>d<br>h      |                                                                                                        |    | www.ContechES.com           11815 NE Glenn Widing Drive, Portland, OR 97220         CONTECH           800-548-4667         503-240-3393         800-561-1271 FAX |                                                             |
| inaccurate information supplied by others.                                                                                                                                                                                                                                                                                                                                                                                                                              | MARK             | DATE REVISION DESCRIPTION                                                                              | BY |                                                                                                                                                                  |                                                             |

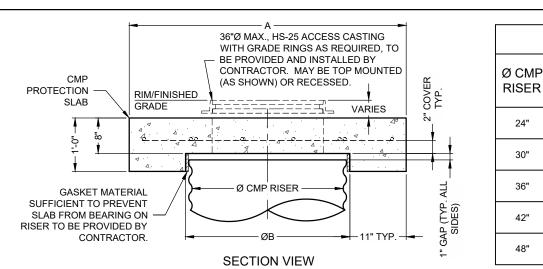
HANDLING AND ASSEMBLY

WITH THE SITE ENGINEER.

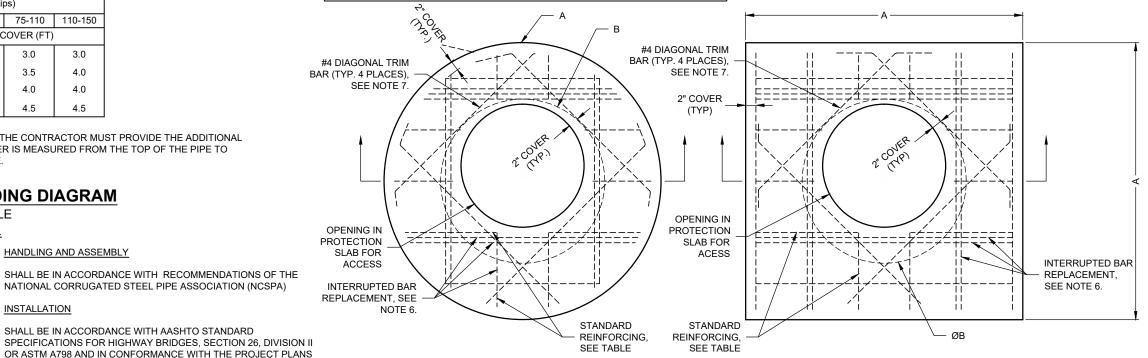
INSTALLATION

NATIONAL CORRUGATED STEEL PIPE ASSOCIATION (NCSPA)

AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR


CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO


TE OF TEL

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD

FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.







#### ROUND OPTION PLAN VIEW

| NOTES:                                                                              | 7. TRIM        |
|-------------------------------------------------------------------------------------|----------------|
| 1. DESIGN IN ACCORDANCE WITH AASHTO, 17th<br>EDITION AND ACI 350.                   | MINII<br>TO N  |
| 2. DESIGN LOAD HS25.                                                                | 8. PRO<br>INST |
| 3. EARTH COVER = 1' MAX.                                                            | 9. DETA        |
| 4. CONCRETE STRENGTH = 4,000 psi                                                    | SUR            |
| 5. REINFORCING STEEL = ASTM A615, GRADE 60.                                         |                |
| 6. PROVIDE ADDITIONAL REINFORCING AROUND<br>OPENINGS EQUAL TO THE BARS INTERRUPTED, | MA             |

SIDE. ADDITIONAL BARS TO BE IN THE

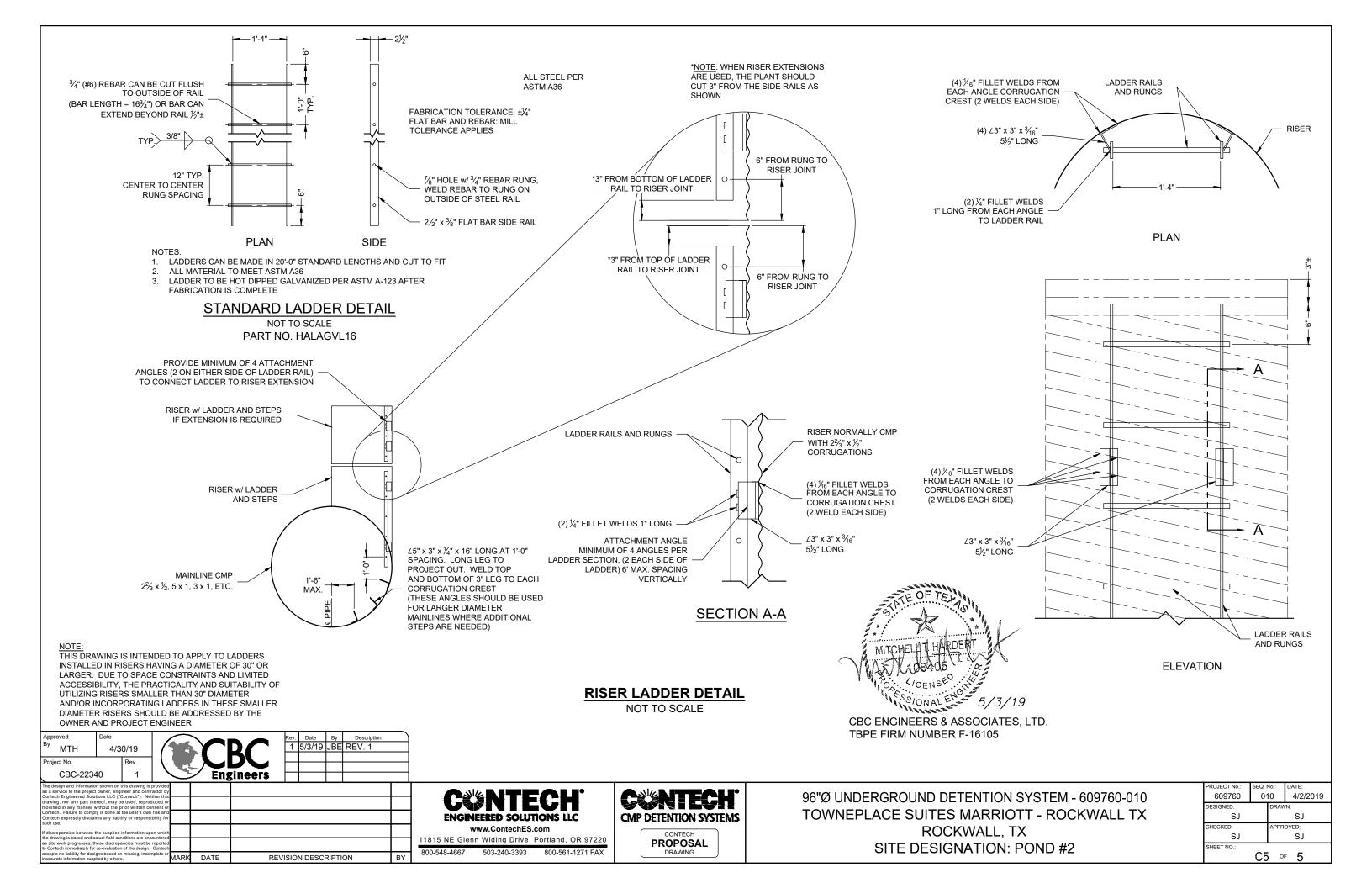
6"Ø UNDERGROUND DETENTION SYSTEM - 609760-010 OWNEPLACE SUITES MARRIOTT - ROCKWALL TX ROCKWALL, TX SITE DESIGNATION: POND #2

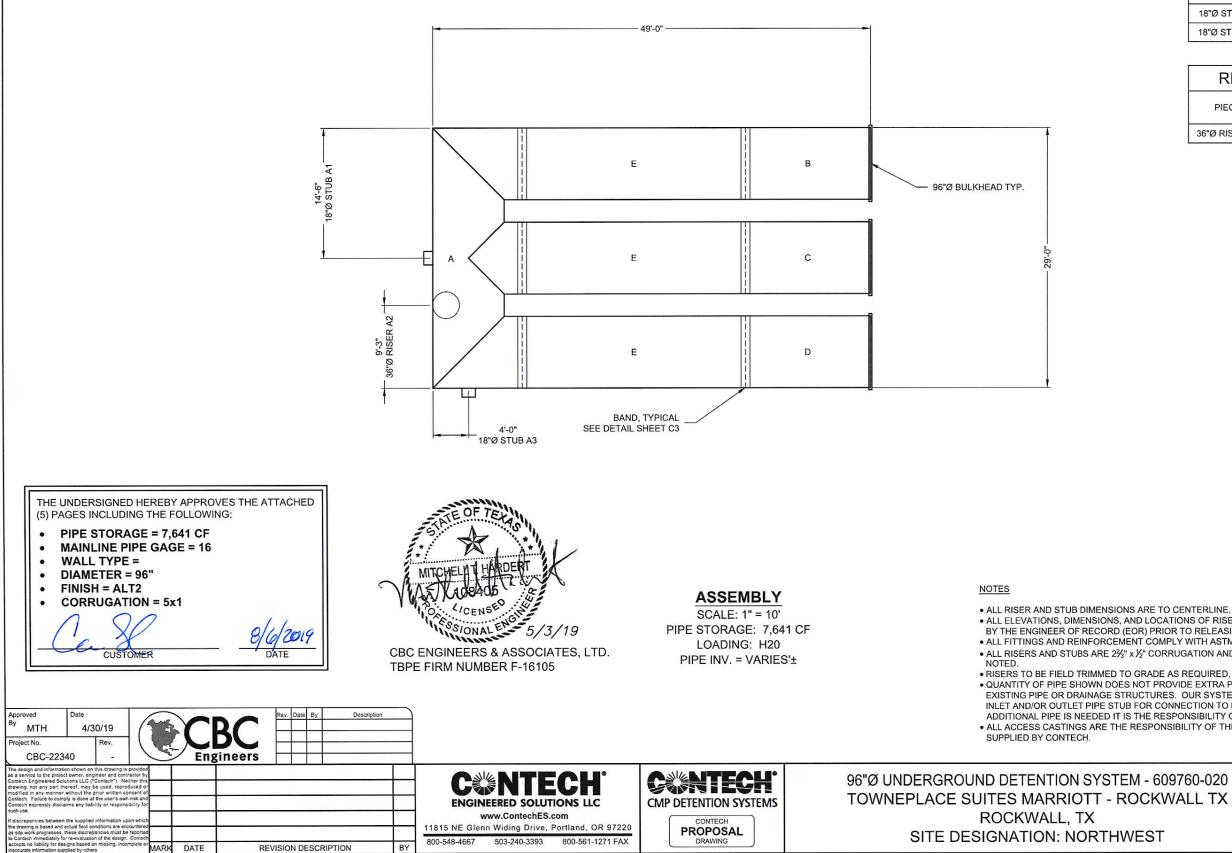
|   | REINFORCING TABLE       |     |                                |                                |  |  |  |  |
|---|-------------------------|-----|--------------------------------|--------------------------------|--|--|--|--|
| 2 | А                       | ВØ  | REINFORCING                    | **BEARING<br>PRESSURE<br>(PSF) |  |  |  |  |
|   | 4'Ø<br>4'x4'            | 26" | #5 @ 10" OCEW<br>#5 @ 10" OCEW | 2,540<br>1,900                 |  |  |  |  |
|   | 4'-6"Ø<br>4'-6" x 4'-6" | 32" | #5 @ 10" OCEW<br>#5 @ 9" OCEW  | 2,260<br>1,670                 |  |  |  |  |
|   | 5'Ø<br>5' x 5'          | 38" | #5 @ 9" OCEW<br>#5 @ 8" OCEW   | 2,060<br>1,500                 |  |  |  |  |
|   | 5'-6"Ø<br>5'-6" x 5'-6" | 44" | #5 @ 8" OCEW<br>#5 @ 8" OCEW   | 1,490<br>1,370                 |  |  |  |  |
|   | 6'Ø<br>6' x 6'          | 50" | #5 @ 7" OCEW<br>#5 @ 7" OCEW   | 1,210<br>1,270                 |  |  |  |  |

\*\* ASSUMED SOIL BEARING CAPACITY

#### SQUARE OPTION PLAN VIEW

M OPENING WITH DIAGONAL #4 BARS, EXTEND BARS A IMUM OF 12" BEYOND OPENING, BEND BARS AS REQUIRED MAINTAIN BAR COVER.


TECTION SLAB AND ALL MATERIALS TO BE PROVIDED AND FALLED BY CONTRACTOR.


TAIL DESIGN BY DELTA ENGINEERS. ARCHITECTS AND LAND RVEYORS, ENDWELL, NY.

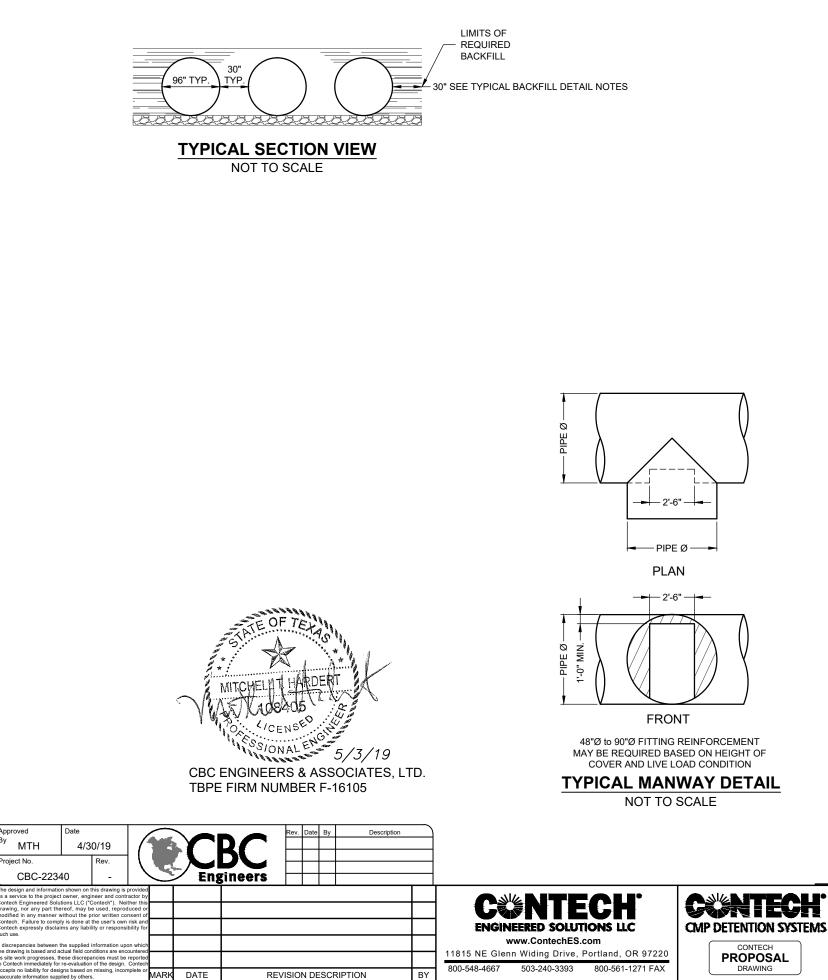
## ANHOLE CAP DETAIL

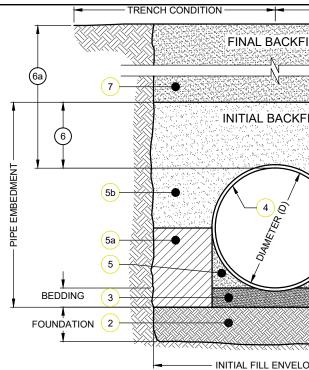
NOT TO SCALE

| PROJECT No.: | SEQ. I | No.: | DATE:    |
|--------------|--------|------|----------|
| 609760       | 01     | 10   | 4/2/2019 |
| DESIGNED:    | -      | DRAW | /N:      |
| SJ           |        |      | SJ       |
| CHECKED:     |        | APPR | OVED:    |
| SJ           |        |      | SJ       |
| SHEET NO .:  |        |      |          |
|              | C4     | . 0  | ⁼ 5      |






| THE RESPONSIBILITY OF THE CON  |                        | E NOT            |                    |
|--------------------------------|------------------------|------------------|--------------------|
| TEM - 609760-020               | PROJECT No :<br>609760 | SEQ. No.:<br>020 | DATE:<br>2/13/2019 |
| EM - 609760-020<br>ROCKWALL TX | DESIGNED:<br>SJ        | DRA              | WN:<br>SJ          |
|                                | CHECKED:<br>SJ         | APP              | ROVED:<br>SJ       |
| IWEST                          | SHEET NO .:            | C1 ·             | of 5               |


• ALL RISERS AND STUBS ARE 2% x 1/2" CORRUGATION AND 16 GAGE UNLESS OTHERWISE RISERS TO BE FIELD TRIMMED TO GRADE AS REQUIRED, BY CONTRACTOR.
 QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.

• ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD (EOR) PRIOR TO RELEASING FOR FABRICATION. • ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.

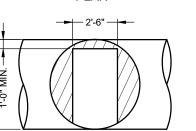
| DICED         | INFORMA   |                  |
|---------------|-----------|------------------|
| RISER         |           | TUN              |
| PIECE         | RIM ELEV. | SYSTEM<br>INVERT |
| 36"Ø RISER A2 | 542.50    | 533.15           |

| STUB         | STUB INFORMATION |                  |  |  |  |  |  |  |  |
|--------------|------------------|------------------|--|--|--|--|--|--|--|
| PIECE        | STUB INVERT      | SYSTEM<br>INVERT |  |  |  |  |  |  |  |
| 18"Ø STUB A1 | 533.05           | 533.05           |  |  |  |  |  |  |  |
| 18"Ø STUB A3 | 536.50           | 533.25           |  |  |  |  |  |  |  |





#### BACKFILL REQUIREMENTS FOLLOW THE GUIDELINES OF AASHTO


- 1 MINIMUM TRENCH WIDTH MUST ALLOW ROOM FOR PROPER CO THE MINIMUM TRENCH WIDTH (12.6.6.1): PIPF ≤ 12" · D + 16" PIPE > 12": 1.5D + 12"
- 1a MINIMUM EMBANKMENT WIDTH (IN FEET) FOR INITIAL FILL ENVE PIPE < 24": 3.0D PIPE 24" - 144": D + 4'0" PIPE > 144": D + 10'0"
- 2 THE FOUNDATION UNDER THE PIPE AND SIDE BACKFILL SHALL
- BEDDING MATERIAL SHALL BE A RELATIVELY LOOSE MATERIAL 3 MINIMUM OF TWICE THE CORRUGATION DEPTH IN THICKNESS, DEPTH (26.3.8.1, 26.5.3).
- 4 CORRUGATED STEEL PIPE (CSP / HEL-COR), DIAMETERS 78" 9
- 5 HAUNCH ZONE MATERIAL SHALL BE HAND SHOVELED OR SHOW
- 5a INITIAL BACKFILL SHALL BE WELL GRADED CRUSHED ROCK UP
- 5b BACKFILL PLACED ABOVE THE SPRINGLINE TO MEET AASHTO 90% STANDARD PROCTOR (T 99). MAXIMUM PARTICLE SIZE NOT IT IS RECOMMENDED THAT LIFTS NOT EXCEED AN 8" UNCOMPA 1/3 THE DIAMETER OR 24" AS THE MAXIMUM DIFFERENTIAL SIDE
- 6 SAND BACKFILL (AASHTO A-3 OR APPROVED EQUAL) TO BE PL
- 6a TOTAL HEIGHT OF COMPACTED COVER FOR CONVENTIONAL H FLEXIBLE PAVEMENT OR TOP OF RIGID PAVEMENT (12.6.6.3).
- 7 FINAL BACKFILL MATERIAL SELECTION AND COMPACTION REQU PER THE ENGINEER OF RECORD (26.5.4.1).

#### NOTES:

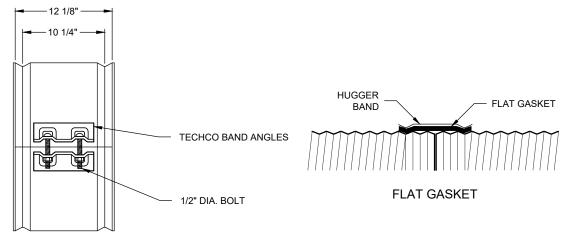
- GEOTEXTILE SHOULD BE CONSIDERED FOR USE TO PREVENT
- FOR MULTIPLE BARREL INSTALLATIONS THE RECOMMENDED S BUT NO LESS THAN 12", OR 36" FOR PIPE DIAMETERS 72" AND L NONSTANDARD SPACING (TABLE C12.6.7-1).

**TYPICAL** 

96"Ø UNDERGROUND DETENTION TOWNEPLACE SUITES MARRIC ROCKWALL, SITE DESIGNATION: NORTHWEST



MAY BE REQUIRED BASED ON HEIGHT OF


#### **TYPICAL MANWAY DETAIL**

| ILL                                                                                                   |              |                |                        | K            |            |                    |
|-------------------------------------------------------------------------------------------------------|--------------|----------------|------------------------|--------------|------------|--------------------|
|                                                                                                       |              |                |                        |              |            |                    |
| ILL                                                                                                   | ]            |                |                        |              |            |                    |
|                                                                                                       |              |                |                        |              |            |                    |
|                                                                                                       |              |                |                        |              |            |                    |
|                                                                                                       |              |                |                        |              |            |                    |
|                                                                                                       |              |                | MIN.                   | Т            | 0.0        | RR.                |
|                                                                                                       |              | DIAMETER       | COVER                  | F            |            | FILE               |
|                                                                                                       |              | 78"-96"        | 12"                    | 3"           | ' x 1",    | , 5" x 1"          |
|                                                                                                       |              |                |                        |              |            |                    |
|                                                                                                       |              |                |                        |              |            |                    |
| DPE 1 1a                                                                                              | SEC 12) AN   | D CONSTRUCTI   | ON (SEC 26)            |              |            |                    |
| OMPACTION OF HAUNCH                                                                                   | I MATERIAI   | LS UNDER THE F | PIPE.                  |              |            |                    |
|                                                                                                       |              |                |                        |              |            |                    |
| ELOPE (12.6.6.2):                                                                                     |              |                |                        |              |            |                    |
|                                                                                                       |              |                |                        |              |            |                    |
| . BE ADEQUATE TO SUPP                                                                                 | PORT THE     | LOADS ACTING   | UPON IT (26.           | .5.2).       |            |                    |
| - THAT IS ROUGHLY SHA<br>WITH THE MAXIMUM PA                                                          |              |                |                        |              |            | ION                |
| 6"                                                                                                    |              |                |                        |              |            |                    |
| VEL SLICED INTO PLACE                                                                                 | TO ALLOW     | FOR PROPER     | COMPACTIO              | N (26        | 6.5.4)     | ).                 |
| TO 2/3 ABOVE THE INVE                                                                                 | RT OF THE    | E PIPE.        |                        |              |            |                    |
| A-1, A-2 OR A-3 CLASSIFI<br>T TO EXCEED 3" (12.4.1.2<br>ACTED LIFT HEIGHT TO F<br>E-TO-SIDE (26.5.4). | 2). ALL LIFT | S PLACED IN A  | CONTROLLE              | D M          | ANNE       | ER.                |
| ACED FROM FROM 2/3 AI                                                                                 | BOVE INVE    | RT OF THE PIPE | TO 12" ABC             | VE F         | PIPE.      |                    |
| IIGHWAY LOADS IS MEAS                                                                                 | SURED FRO    | OM TOP OF PIPE |                        | И OF         |            |                    |
| UIREMENTS SHALL FOLI                                                                                  | LOW THE P    | ROJECT PLANS   | AND SPECI              | FICA         | TION       | IS                 |
| SOIL MIGRATION INTO V<br>STANDARD SPACING BET<br>ARGER. CONTACT YOU                                   | WEEN PAR     | RALLEL PIPE RU | NS SHALL B             |              |            | IA./2              |
| BACKFILL DE                                                                                           | ETAIL        |                |                        |              |            |                    |
| N SYSTEM - 609                                                                                        | 760-020      | )              | PROJECT No.:<br>609760 | SEQ. I<br>02 | No.:<br>20 | DATE:<br>2/13/2019 |
| DTT - ROCKW/                                                                                          |              |                | DESIGNED:<br>SJ        |              | DRAW       | SJ                 |
| ТХ                                                                                                    |              |                | CHECKED:<br>S.I        |              | APPR       | OVED:<br>S.I       |

HEET NO.

C2 oF 5

- EMBANKMENT CONDITION -



CONNECTION DETAIL 7 1/2" TECHCO

## 2 2/3"x1/2" RE-ROLLED END HEL-COR PIPE

GENERAL NOTES:

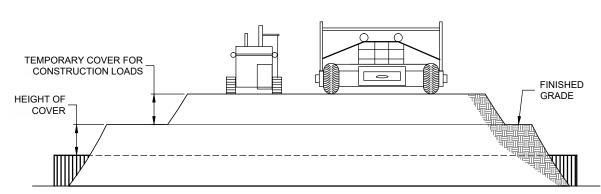
- 1. JOINT IS TO BE ASSEMBLED PER AASHTO BRIDGE CONSTRUCTION SPECIFICATION SEC 26.4.2.4.
- 2. BAND MATERIALS AND/OR COATING CAN VARY BY LOCATION. CONTACT YOUR CONTECH REPRESENTATIVE FOR AVAILABILITY.
- 3. BANDS ARE SHAPED TO MATCH THE PIPE-ARCH WHEN APPLICABLE.
- 4. BANDS ARE NORMALLY FURNISHED AS FOLLOWS:
  - 12" THRU 48" 1-PIECE
  - 54" THRU 96" 2-PIECES
  - 102" THRU 144" 3-PIECES
- 5. BAND FASTENERS ARE ATTACHED WITH SPOT WELDS, RIVETS OR HAND WELDS.
- 6. ALL CMP IS REROLLED TO HAVE ANNULAR END CORRUGATIONS OF 2 2/3"x1/2"
- 7. DIMENSIONS ARE SUBJECT TO MANUFACTURING TOLERANCES.
- 8. ORDER SHALL DESIGNATE GASKET OPTION, IF REQUIRED (SEE DETAILS ABOVE).



| Approved                                                   | Date           |                     | $\sim$ |       |         | Re   | ev. Da | te By | 0 | Description |   |
|------------------------------------------------------------|----------------|---------------------|--------|-------|---------|------|--------|-------|---|-------------|---|
| <sup>By</sup> MTH                                          | 4/30/          | 19 🖌                |        |       |         | ╹匚   |        |       |   |             |   |
| Project No.                                                | R              | ev.                 |        |       | D       | ı  - | +      |       |   |             |   |
| CBC-2234                                                   | 0              | -   `               | S      | ン Eng | gineers | ; ├  | +      |       |   |             |   |
| The design and information<br>as a service to the project  |                |                     |        |       |         |      |        |       |   |             |   |
| Contech Engineered Solut                                   | ions LLC ("Con | tech"). Neither thi | s      |       |         |      |        |       |   |             |   |
| drawing, nor any part the<br>modified in any manner w      |                |                     |        |       |         |      |        |       |   |             |   |
| Contech. Failure to compl<br>Contech expressly disclair    |                |                     |        |       |         |      |        |       |   |             |   |
| such use.                                                  | ,              |                     |        |       |         |      |        |       |   |             | — |
| If discrepancies between t                                 |                |                     |        |       |         |      |        |       |   |             |   |
| the drawing is based and ac<br>as site work progresses, th |                |                     |        |       |         |      |        |       |   |             |   |
| to Contech immediately for                                 |                |                     |        |       |         |      |        |       |   |             |   |
|                                                            |                | ssing, incomplete o |        |       |         |      |        |       |   | -           | _ |






DRAWING

96"Ø UNDERGROUND DETENTION TOWNEPLACE SUITES MARRIC ROCKWALL, T SITE DESIGNATION: NO



CBC ENGINEERS & ASSOCIATES, LTD. TBPE FIRM NUMBER F-16105

| NSYSTEM - 609760-020 | PROJECT No.:<br>609760 | seq. n<br>02 | - 1   | DATE:<br>2/13/2019  |
|----------------------|------------------------|--------------|-------|---------------------|
| OTT - ROCKWALL TX    | DESIGNED:<br>SJ        |              | DRAW  | <sup>N:</sup><br>SJ |
| ТХ                   | CHECKED:<br>SJ         | ſ            | APPRO | OVED:<br>SJ         |
| ORTHWEST             | SHEET NO .:            | C3           | OF    | 5                   |



#### CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

| PIPE SPAN,<br>INCHES |       | == .      | _OADS<br>ps) |         |
|----------------------|-------|-----------|--------------|---------|
| INTOFILE             | 18-50 | 50-75     | 75-110       | 110-150 |
|                      |       | MINIMUM ( | COVER (FT)   |         |
| 12-42                | 2.0   | 2.5       | 3.0          | 3.0     |
| 48-72                | 3.0   | 3.0       | 3.5          | 4.0     |
| 78-120               | 3.0   | 3.5       | 4.0          | 4.0     |
| 126-144              | 3.5   | 4.0       | 4.5          | 4.5     |

\*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

#### **CONSTRUCTION LOADING DIAGRAM**

HANDLING AND ASSEMBLY

WITH THE SITE ENGINEER.

SHALL BE IN ACCORDANCE WITH AASHTO STANDARD

FOLLOW OSHA GUIDELINES FOR SAFE PRACTICES.

OR ASTM A798 AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR

CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO

INSTALLATION

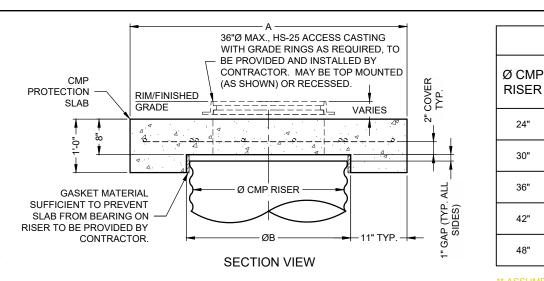
NOT TO SCALE

SPECIFICATION FOR CORRUGATED STEEL PIPE-ALUMINIZED TYPE 2 STEEL

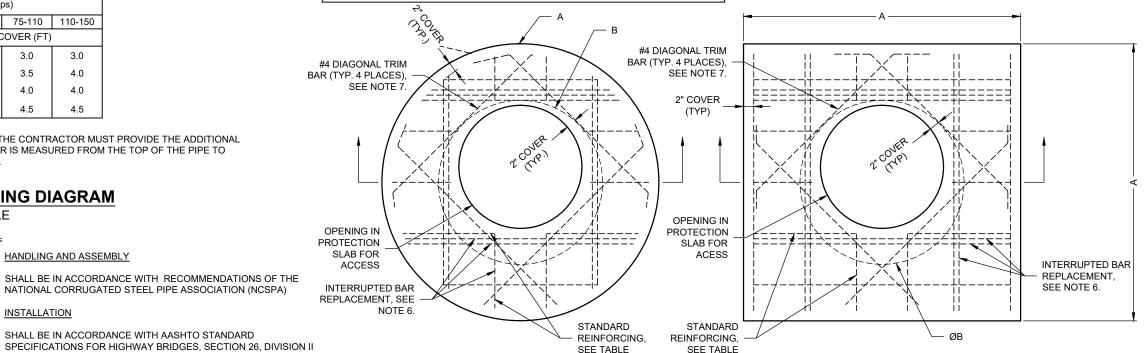
#### SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE CORRUGATED STEEL PIPE (CSP) DETAILED IN THE PROJECT PLANS.

#### MATERIAL


THE ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE APPLICABLE REQUIREMENTS OF AASHTO M274 OR ASTM A929.

#### PIPE


THE CSP SHALL BE MANUFACTURED IN ACCORDANCE WITH THE APPLICABLE REQUIREMENTS OF AASHTO M36 OR ASTM A760. THE PIPE SIZES, GAGES AND CORRUGATIONS SHALL BE AS SHOWN ON THE PROJECT PLANS

ALL FABRICATION OF THE PRODUCT SHALL OCCUR WITHIN THE UNITED STATES.

|                                                                                                                            |                                                                                                                                                                                                                                                                    |                                               |      | ERIAL     | TTO 5   |         |             | <u> </u> |                                                            |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|-----------|---------|---------|-------------|----------|------------------------------------------------------------|
| Approved<br>By MTH                                                                                                         | Date 4/30/19                                                                                                                                                                                                                                                       |                                               |      |           | Rev.    | Date By | Description |          |                                                            |
| Project No.<br>CBC-22                                                                                                      | Rev.                                                                                                                                                                                                                                                               |                                               | Eng  | <b>BC</b> | Ħ       |         |             |          | C<br>T                                                     |
| as a service to the pro<br>Contech Engineered S<br>drawing, nor any part<br>modified in any mann<br>Contech. Failure to co | ation shown on this drawing is pro-<br>ject owner, engineer and contrac-<br>olutions LLC ("Contech"). Neithe<br>thereof, may be used, reproduc<br>er without the prior written cons-<br>mply is done at the user's own ris<br>claims any liability or responsibili | tor by<br>er this<br>ed or<br>ent of<br>k and |      |           |         |         |             |          | C INTEC                                                    |
| the drawing is based an<br>as site work progresse                                                                          | en the supplied information upon<br>d actual field conditions are encour<br>s, these discrepancies must be rep                                                                                                                                                     | ntered<br>ported                              |      |           |         |         |             |          | www.ContechES.com<br>11815 NE Glenn Widing Drive, Portland |
|                                                                                                                            | for re-evaluation of the design. Co<br>designs based on missing, incomplete                                                                                                                                                                                        |                                               | DATE | R         | EVISION |         | N           | BY       | 800-548-4667 503-240-3393 800-5                            |



#### ACCESS CASTING NOT SUPPLIED BY CONTECH



#### ROUND OPTION PLAN VIEW

|      | NOT | res:                                                                             | 7. | TRIM          |
|------|-----|----------------------------------------------------------------------------------|----|---------------|
|      | 1.  | DESIGN IN ACCORDANCE WITH AASHTO, 17th<br>EDITION AND ACI 350.                   |    | MINII<br>TO N |
|      | 2.  | DESIGN LOAD HS25.                                                                | 8. | PRO<br>INST   |
|      | 3.  | EARTH COVER = 1' MAX.                                                            | 9. | DETA          |
|      | 4.  | CONCRETE STRENGTH = 4,000 psi                                                    |    | SUR           |
|      | 5.  | REINFORCING STEEL = ASTM A615, GRADE 60.                                         |    |               |
| )    |     | PROVIDE ADDITIONAL REINFORCING AROUND<br>OPENINGS EQUAL TO THE BARS INTERRUPTED, |    | MA            |
| , LT | D.  | HALF EACH SIDE. ADDITIONAL BARS TO BE IN THE SAME PLANE.                         |    |               |

BC ENGINEERS & ASSOCIATES, BPE FIRM NUMBER F-16105

158888888

5/3/19



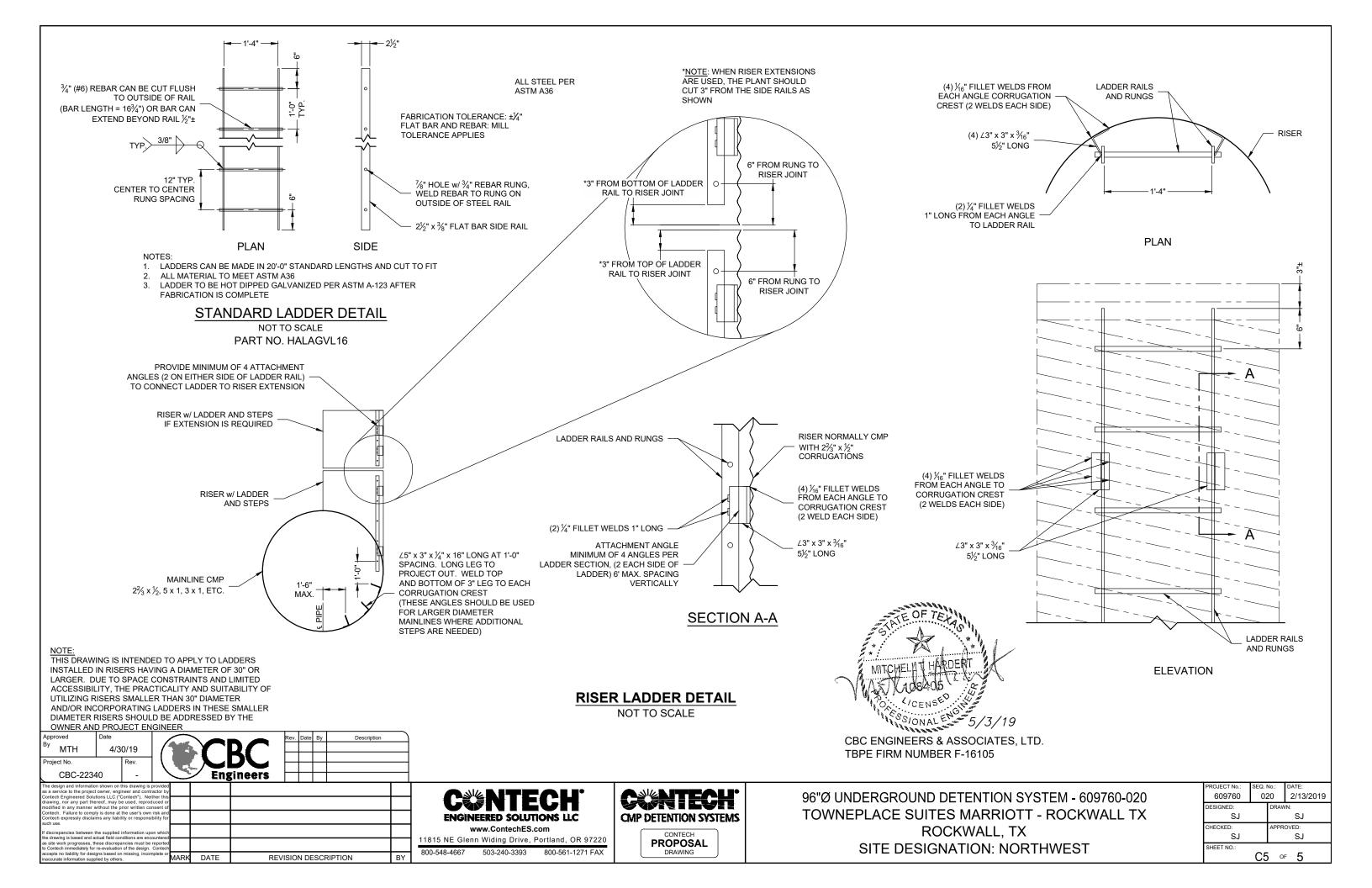
96"Ø UNDERGROUND DETENTION SYSTEM - 609760-020 **TOWNEPLACE SUITES MARRIOTT - ROCKWALL TX** ROCKWALL, TX SITE DESIGNATION: NORTHWEST

|   | REINFORCING TABLE       |     |                                |                                |  |  |  |  |  |  |  |  |
|---|-------------------------|-----|--------------------------------|--------------------------------|--|--|--|--|--|--|--|--|
| 2 | А                       | ВØ  | REINFORCING                    | **BEARING<br>PRESSURE<br>(PSF) |  |  |  |  |  |  |  |  |
|   | 4'Ø<br>4'x4'            | 26" | #5 @ 10" OCEW<br>#5 @ 10" OCEW | 2,540<br>1,900                 |  |  |  |  |  |  |  |  |
|   | 4'-6"Ø<br>4'-6" x 4'-6" | 32" | #5 @ 10" OCEW<br>#5 @ 9" OCEW  | 2,260<br>1,670                 |  |  |  |  |  |  |  |  |
|   | 5'Ø<br>5' x 5'          | 38" | #5 @ 9" OCEW<br>#5 @ 8" OCEW   | 2,060<br>1,500                 |  |  |  |  |  |  |  |  |
|   | 5'-6"Ø<br>5'-6" x 5'-6" | 44" | #5 @ 8" OCEW<br>#5 @ 8" OCEW   | 1,490<br>1,370                 |  |  |  |  |  |  |  |  |
|   | 6'Ø<br>6' x 6'          | 50" | #5 @ 7" OCEW<br>#5 @ 7" OCEW   | 1,210<br>1,270                 |  |  |  |  |  |  |  |  |

\*\* ASSUMED SOIL BEARING CAPACITY

#### SQUARE OPTION PLAN VIEW

M OPENING WITH DIAGONAL #4 BARS, EXTEND BARS A IMUM OF 12" BEYOND OPENING, BEND BARS AS REQUIRED MAINTAIN BAR COVER.


DTECTION SLAB AND ALL MATERIALS TO BE PROVIDED AND TALLED BY CONTRACTOR.

TAIL DESIGN BY DELTA ENGINEERS, ARCHITECTS AND LAND RVEYORS, ENDWELL, NY.

## ANHOLE CAP DETAIL

NOT TO SCALE

|              | C4     | . 0  | ⁼ 5       |
|--------------|--------|------|-----------|
| SHEET NO .:  |        |      |           |
| SJ           |        |      | SJ        |
| CHECKED:     |        | APPR | OVED:     |
| SJ           |        |      | SJ        |
| DESIGNED:    |        | DRAW | /N:       |
| 609760       | 02     | 20   | 2/13/2019 |
| PROJECT No.: | SEQ. I | NO.: | DATE:     |



## 100 YR STORM

| Present C | Present Conditions |                | ELOPED    | Вур        | ass Flow |                |         |  |     |  |  |
|-----------|--------------------|----------------|-----------|------------|----------|----------------|---------|--|-----|--|--|
| Q =       | CIA                | DRAINAGE AREAS |           | C          | e CIA    | DRAINAGE AREAS |         |  |     |  |  |
| A =       | 1.31               | 1              |           | A =        | 0.18 1,8 |                | 0.18 1, |  | 1,8 |  |  |
| C =       | 0.35               |                |           | <b>C</b> = | 0.90     | )              |         |  |     |  |  |
| Tc =      | 20                 |                |           | Tc =       | 10       |                |         |  |     |  |  |
| 1100 =    | 8.30               |                |           | 1100 =     | 9.80     | )              |         |  |     |  |  |
| Q100 =    | 3.81               | cfs            |           | Q100 =     | 1.59     | )              | cfs     |  |     |  |  |
| Q100 =    | 3.81               | cfs            |           | Q100 TOTAL | =        | 1.59           | cfs     |  |     |  |  |
|           |                    |                |           |            |          |                |         |  |     |  |  |
|           |                    | Q100 AI        | lowable = | 2.22       | cfs      |                |         |  |     |  |  |

|           |           |          | <u>25 YR S</u> | <u>STORM</u> |            |      |            |          |
|-----------|-----------|----------|----------------|--------------|------------|------|------------|----------|
| Present C | onditions | PRE. DEV | ELOPED         | В            | ypass Flow | 1    |            |          |
| Q =       | CIA       | DRAINAG  | E AREAS        |              | Q = CIA    |      | DRAINA     | GE AREAS |
| A =       | 1.31      | 1        |                | A =          | 0.3        | 18   | 1          | ,8       |
| C =       | 0.35      |          |                | <b>C</b> =   | 0.9        | 90   |            |          |
| Tc =      | 20        |          |                | Tc =         | 1          | 0    |            |          |
| 125 =     | 6.80      |          |                | 125 =        | 8.3        | 30   |            |          |
| Q25 =     | 3.12      | cfs      |                | Q25 =        | 1.3        | 34   | cfs        |          |
| Q25 =     | 3.12      | cfs      |                | Q25 TOTA     | L =        | 1.34 | <b>cfs</b> |          |
|           |           |          |                |              |            |      |            |          |
|           |           | Q25 AI   | lowable =      | 1.77         | cfs        |      |            |          |

| Condition | ns DRAINAGE             |
|-----------|-------------------------|
| (         | AREAS                   |
| 0.8       | 1 2, 7                  |
| 0.9       | 0                       |
| 10        | )                       |
| 8.3       | 0                       |
| 6.0       | 5 cfs                   |
|           | 0.8<br>0.9<br>10<br>8.3 |

| F    | low for Sto | orm Duration | IS   |  |
|------|-------------|--------------|------|--|
| Time | I.          | С            | Q    |  |
| 10   | 8.30        | 0.90         | 6.05 |  |
| 15   | 7.40        | 0.90         | 5.39 |  |
| 20   | 6.80        | 0.90         | 4.96 |  |
| 30   | 5.50        | 0.90         | 4.01 |  |
| 40   | 4.70        | 0.90         | 3.43 |  |
| 50   | 4.00        | 0.90         | 2.92 |  |
| 60   | 3.50        | 0.90         | 2.55 |  |
| 70   | 3.30        | 0.90         | 2.41 |  |
| 80   | 3.10        | 0.90         | 2.26 |  |
| 90   | 2.80        | 0.90         | 2.04 |  |
| 100  | 2.60        | 0.90         | 1.90 |  |
| 110  | 2.40        | 0.90         | 1.75 |  |

| Storage Ca | alculations |           |                     |
|------------|-------------|-----------|---------------------|
| 10         |             |           |                     |
|            | min         | 0         | 25.67               |
| Inflow     | 3630        | Storage = | 2567                |
| Outflow    | 1064        |           |                     |
| 15         | min         |           |                     |
| Inflow     | 4855        | Storage = | 3525                |
| Outflow    | 1330        |           |                     |
|            |             |           |                     |
| 20         | min         |           |                     |
| Inflow     | 5949        | Storage = | 4353                |
| Outflow    | 1596        |           |                     |
| 30         | min         |           |                     |
| Inflow     | 7217        | Storage = | 5089                |
| Outflow    | 2128        | Storage - | 5085                |
| Outilow    | 2120        |           |                     |
| 40         | min         |           |                     |
| Inflow     | 8223        | Storage = | 5563                |
| Outflow    | 2660        |           |                     |
|            |             |           |                     |
| 50         | min         |           |                     |
| Inflow     | 8748        | Storage = | 5556                |
| Outflow    | 3192        |           |                     |
|            |             |           |                     |
|            | min         | 0.        | 5460                |
| Inflow     | 9185        | Storage = | 5462                |
| Outflow    | 3724        |           |                     |
| 70         | min         |           |                     |
| Inflow     | 10104       | Storage = | 5848                |
| Outflow    | 4256        |           |                     |
|            |             |           |                     |
| 80         | min         |           |                     |
| Inflow     | 10848       | Storage = | 6060                |
| Outflow    | 4788        |           |                     |
|            |             |           |                     |
|            | min         | 0.        | 5300                |
| Inflow     | 11022       | Storage = | 5703                |
| Outflow    | 5320        |           |                     |
| 100        | min         |           |                     |
| Inflow     | 11372       | Storage = | 5521                |
| Outflow    | 5852        |           |                     |
|            |             |           |                     |
| 110        | min         |           |                     |
| Inflow     | 11547       | Storage = | 51 <mark>6</mark> 4 |
| Outflow    | 6384        |           |                     |
|            |             |           |                     |

| Future C | onditions | DRAINAGE |
|----------|-----------|----------|
| Q = CIA  |           | AREAS    |
| A =      | 0.81      | 2, 7     |
| C =      | 0.90      |          |
|          |           |          |

| Tc =   |       | 10     | 0    |         |     |    |
|--------|-------|--------|------|---------|-----|----|
| 1100 = | -     | 9.8    | 30   |         |     |    |
| Q100   | =     | 7.1    | 14   | cfs     |     |    |
|        |       |        |      |         |     |    |
| F      | low f | or Sto | rm D | uratior | IS  |    |
| Time   |       | 1      |      | С       | C   | λ  |
| 10     | 9     | .80    | 0    | .90     | 7.3 | 14 |
| 15     | 9     | .00    | 0    | .90     | 6.  | 56 |
| 20     | 8     | .30    | 0    | .90     | 6.0 | 05 |
| 30     | 6     | .90    | 0    | .90     | 5.0 | 03 |
| 40     | 5     | .80    | 0    | .90     | 4.2 | 23 |
| 50     | 5     | .00    | 0    | .90     | 3.0 | 65 |
| 60     | 4     | .50    | 0    | .90     | 3.2 | 28 |
| 70     | 4     | .00    | 0    | .90     | 2.9 | 92 |
| 80     | 3     | .70    | 0    | .90     | 2.  | 70 |
| 90     | 3     | .50    | 0    | .90     | 2.  | 55 |
| 100    | 3     | .40    | 0    | .90     | 2.4 | 48 |
| 110    | 3     | .20    | 0    | .90     | 2.3 | 33 |

| Storage Ca        | alculations  |           |      |
|-------------------|--------------|-----------|------|
|                   |              |           |      |
| 10                | min          |           |      |
| Inflow            | 4287         | Storage = | 2956 |
| Outflow           | 1331         |           |      |
| 15                | min          |           |      |
| Inflow            | 5905         | Storage = | 4241 |
| Outflow           | 1663         |           |      |
| 20                | min          |           |      |
| 20<br>Inflow      | 7261         | Storage = | 5265 |
| Outflow           | 1996         | Storage - | 5205 |
|                   |              |           |      |
|                   | min          |           |      |
| Inflow<br>Outflow | 9054<br>2662 | Storage = | 6393 |
| outhow            | 2002         |           |      |
| 40                | min          |           |      |
| Inflow            | 10148        | Storage = | 6821 |
| Outflow           | 3327         |           |      |
| 50                | min          |           |      |
| Inflow            | 10935        | Storage = | 6943 |
| Outflow           | 3992         |           |      |
| 60                | min          |           |      |
| Inflow            | 11810        | Storage = | 7152 |
| Outflow           | 4658         | Storage - | /152 |
| outilow           | -1050        |           |      |
| 70                | min          |           |      |
| Inflow            | 12247        | Storage = | 6924 |
| Outflow           | 5323         |           |      |
|                   | •            |           |      |
| 80<br>Inflow      | min<br>12947 | Starage - | 6050 |
| Outflow           | 5988         | Storage = | 6959 |
| Outriow           | 2988         |           |      |
| 90                | min          |           |      |
| Inflow            | 13778        | Storage = | 7124 |
| Outflow           | 6654         |           |      |
| 100               | min          |           |      |
| Inflow            | 14872        | Storage = | 7552 |
| Outflow           | 7319         | Storage - | JJZ  |
|                   |              |           |      |
|                   | min          |           |      |
| Inflow            | 15396        | Storage = | 7412 |
| Outflow           | 7985         |           |      |

Storage Required = 7552 CF

|--|

|           |            |          | 10 111 01 |            |            |      |        |          |
|-----------|------------|----------|-----------|------------|------------|------|--------|----------|
| Present C | Conditions | PRE. DEV | ELOPED    | В          | ypass Flow |      |        |          |
| Q =       | CIA        | DRAINAG  | E AREAS   |            | Q = CIA    |      | DRAINA | GE AREAS |
| A =       | 1.31       | 1        |           | A =        | 0.         | 18   | 1      | L,8      |
| C =       | 0.35       |          |           | <b>C</b> = | 0.         | 90   |        |          |
| Tc =      | 20         |          |           | Tc =       | 1          | 0    |        |          |
| 110 =     | 5.90       |          |           | 110 =      | 7.         | 10   |        |          |
| Q10 =     | 2.71       | cfs      |           | Q10 =      | 1.         | 15   | cfs    |          |
| Q10 =     | 2.71       | cfs      |           | Q10 TOTAL  | .=         | 1.15 | cfs    |          |
|           |            |          |           |            |            |      |        |          |
|           |            | Q10 Al   | lowable = | 1.55       | cfs        |      |        |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Revision Date          | Description                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|
| <u>5 YR STORM</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                         |
| Present ConditionsPRE. DEVELOPEDBypass FlowQ = CIADRAINAGE AREASQ = CIADRAINAGE AREASA =1.311A =0.181,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |
| R = 0.35 $R = 0.10$ $1,0$ $C = 0.35$ $C = 0.90$ $Tc = 20$ $Tc = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                         |
| I5 =     4.90     I5 =     6.10       Q5 =     2.25     cfs     Q5 =     0.99     cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                         |
| Q5 = 2.25 cfs Q5 TOTAL= 0.99 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                         |
| Q5 Allowable = 1.26 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .Р.                    |                                         |
| Future ConditionsDRAINAGE $Q = CIA$ AREAS $A =$ 0.812, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l, L                   |                                         |
| $\begin{array}{c cccc} C = & 0.90 \\ \hline Tc = & 10 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hotel,                 | -120<br>)32<br>9225                     |
| $\begin{array}{c cccc} 15 = & 6.10 \\ 0.5 = & 4.45 \\ cfs \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Owner:<br>t TPS I      | aad, A-120<br>X 75032<br>890-9225       |
| Flow for Storm Durations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | owner:<br>eencrest TPS |                                         |
| Time         I         C         Q           10         6.10         0.90         4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | crea                   | 021 Ridge F<br>Rockwall,<br>Phone: (214 |
| 15     5.60     0.90     4.08       20     4.90     0.90     3.57       30     4.00     0.90     2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | reen                   | 3021 Ri<br>Rockv<br>Phone:              |
| 40         3.40         0.90         2.48           50         2.90         0.90         2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbf{G}$           |                                         |
| 602.600.901.90702.400.901.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                         |
| 80         2.20         0.90         1.60           90         2.10         0.90         1.53           100         1.90         0.90         1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                         |
| 100         1.30         0.30         1.35           110         1.70         0.90         1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                         |
| Storage Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                         |
| 10 min         Min           Inflow         2668         Storage = 1913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 8                                       |
| Outflow       755         Image: A state of the state of                          |                        | - 77                                    |
| Inflow         3674         Storage =         2730           Outflow         944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sim$                 | 1469) 402<br>1 F-7449                   |
| 20         min         Image: Constraint of the second seco | O jo                   | 52 •<br>Firn                            |
| Inflow         4287         Storage =         3154           Outflow         1133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Engineer<br>CORPOR     | , Texas 7503<br>Engineering             |
| 30 min         5249         Storage =         3739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vil E<br>Y C           | ath, Te<br>red En                       |
| Outflow     1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Civil                  | burt • Heath,<br>Registered I           |
| 40         min            Inflow         5949         Storage =         4061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U Č                    | izon Court<br>Texas Reç                 |
| Outflow     1888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F.C.                   | юĻ                                      |
| Inflow         6342         Storage =         4077           Outflow         2265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | *                                       |
| 60 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| Inflow         6823         Storage =         4181           Outflow         2643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                         |
| TO         min         Company         Company <thcompany< th=""> <thcompany< th=""> <thcompany< t<="" th=""><th></th><th></th></thcompany<></thcompany<></thcompany<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| Outflow     3020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                         |
| 80 min         80 min           0 CF         Inflow         7698         Storage =         4300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                         |
| Outflow 3398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                         |
| 90 min90 minInflow8267Storage = 4492Outflow3775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M A R R                | TES —                                   |
| 100 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |
| Inflow         8311         Storage =         4158           Outflow         4153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 908 E. INTE            |                                         |
| 110     min     5000       Inflow     8179     Storage = 3649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCKWALI               | _, IX /5087                             |
| Innow         8173         Storage -         Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | 3/202                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STATE O                | F. TELAS                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAMERON<br>R. 1065     |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOVA CEN               | NSED. HAVE                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ca.                    | Sh                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drawn By:<br>F.C. CUNY | Checked By:<br>F.C. CUNY                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date:<br>11/19/2018    | Project No.:<br>–                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sheet Title:<br>Ponc   |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calcul                 | ations<br>Sheet No.:                    |
| SP 2018-029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Scale:                 |                                         |

| Future Co  | nditions | DRAINAGE   |
|------------|----------|------------|
| Q = CIA    |          | AREAS      |
| A =        | 0.81     | 2, 7       |
| <b>C</b> = | 0.90     |            |
| Tc =       | 10       |            |
| 15 =       | 6.10     |            |
| Q5 =       | 4.45     | <b>cfs</b> |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             | <u>5 YR S</u> | TORM      |                          |                           |                    |                        |                          |                     |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|---------------|-----------|--------------------------|---------------------------|--------------------|------------------------|--------------------------|---------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ions             |             |               |           |                          |                           |                    |                        |                          | EAS                 |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31               |             |               |           | <u></u>                  | 0.18                      |                    | DKAI                   |                          | EAS                 |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35<br>0          |             |               | Tc =      |                          | 10                        |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             |               | Q5=       |                          |                           |                    | -                      |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 (             |             |               |           |                          |                           | 0.99               | cfs                    |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Q5 All      | owable =      | :         | 1.26 cfs                 |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             | nditions      | -         |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | A =         |               | -         |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Tc =        | 10            |           |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             |               | cfs       |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Flow        | or Storm      | Duration  | S                        | 7                         |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | ime         | 1             | С         | Q                        | _                         |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 15 5        | .60           | 0.90      | 4.08                     |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 30 4        | .00           | 0.90      | 2.92                     | _                         |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 50 2        | .90           | 0.90      | 2.11                     | _                         |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 70 2        | .40           |           |                          |                           |                    |                        |                          |                     |                               |
| 1 1 0 0 0 1       1         1 0 0 0 0 1       1         1 0 0 0 0 1       1         1 0 0 0 0 0       1         1 0 0 0 0       1         1 0 0 0 0       1         1 0 0 0       1         1 0 0 0       1         1 0 0 0       1         1 0 0 0       1         1 0 0 0       1         1 0 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1         1 0 0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 90 2        | .10           | 0.90      | 1.53                     |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             |               |           |                          | -                         |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | orage            | Calculation | 15            |           |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | flow             | 266         |               | Stor      | age =                    | 1913                      |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | utflov           |             |               |           |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | flow             | 367         |               | Stor      | age =                    | 2730                      |                    |                        |                          |                     |                               |
| a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a         a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | utflov           |             | 4             |           |                          |                           |                    |                        |                          |                     |                               |
| Image: A mage: A | flow             |             | 37            | Stor      | age =                    | 3154                      |                    |                        |                          |                     |                               |
| a         a         b         b         a         b         a         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | utflov           | v 113       | 3             |           |                          |                           |                    |                        |                          |                     |                               |
| am         isin           am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | flow             |             | 19            | Stor      | age =                    | 3739                      |                    |                        |                          |                     |                               |
| a         500         Storage         001           a         626         407         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60 </td <td>utflov</td> <td></td> <td></td> <td></td> <td>uge -</td> <td>5755</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | utflov           |             |               |           | uge -                    | 5755                      |                    |                        |                          |                     |                               |
| am         am           am         bm           am <t< td=""><td></td><td></td><td>10</td><td>Char</td><td></td><td>4001</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             | 10            | Char      |                          | 4001                      |                    |                        |                          |                     |                               |
| minimu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | flow<br>utflov   |             |               | Stor      | age =                    | 4061                      |                    |                        |                          |                     |                               |
| Sum and base of a star and b  |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| n         623         Storage         4181           n         n         n         n           n         7030         Intrage         4020           n         7038         Storage         4020           n         7038         Storage         4020           n         10 min         Intrage         4020 (F           n         10 min         Intrage         402 (F           n         10 min         Intrage         10 min           n         10 min         10 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iflow<br>utflov  |             |               | Stor      | age =                    | 4077                      |                    |                        |                          |                     |                               |
| n         623         1 orage         4181           n         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <td< td=""><td></td><td>60 min</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 60 min      |               |           |                          |                           |                    |                        |                          |                     |                               |
| Name             Nam             Name             <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | flow<br>utflov   | 682         |               | Stor      | age =                    | 4181                      |                    |                        |                          |                     |                               |
| No       10 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | flow             | 734         |               | Stor      | age =                    | 4328                      |                    |                        |                          |                     |                               |
| w       7698       Storage = 4300         90 min       w       8267       Storage = 4499         100 min       m       m         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | utflov           |             | 20            |           |                          |                           |                    |                        |                          |                     |                               |
| 0       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nflow            |             | 8             | Stor      | age =                    | 4300                      |                    |                        |                          |                     |                               |
| w       8267       Storage = 4493         10       m       m         v       8311       Storage = 4158         10       m       m         v       8179       Storage = 3649         ow       4530       Storage = 3649         Storage = 1000       Storage = 3649         ow       4530       Storage = 3649         Storage = 1000       Storage = 3649         ow       4530       Storage = 3649         Storage = 1000       Storage = 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | utflov           | v 339       | 8             |           |                          |                           |                    |                        |                          |                     |                               |
| ow       3775       0         100       0       0         w       8311       Storage = 4158         100       0       0         w       8179       Storage = 3649         ow       4530       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nflow            |             | 57            | Stor      | age =                    | 4492                      | Sto                | orage Re               | auired =                 |                     | 4492 CF                       |
| w       8311       Storage =       4158         10       min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | utflov           |             |               |           | 480                      | 1152                      |                    |                        | <u></u>                  |                     |                               |
| ow       4153       Imin         10       min       Imin         N       8179       Storage = 3649         ow       4530       Imin         SP       2018-029         This drawing is proprietary and may not be copied or used in any way without the       Imin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| w       8179       Storage = 3649         ow       4530       Storage = 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nflow<br>Dutflov |             |               | Stor      | age =                    | 4158                      |                    |                        |                          |                     |                               |
| ow 4530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                | 10 min      |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nflow<br>Dutflov |             |               | Stor      | age =                    | 3649                      |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | utilov           | <b>-</b>    |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
| This drawing is proprietary and may not be copied or used in any way without the written permission of FC Cuny Corporation – © Copyright – FC Cuny Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |             |               |           |                          |                           |                    |                        |                          |                     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             |               | This writ | drawing is<br>ten permis | proprietary<br>sion of FC | v and mo<br>Cuny C | ay not b<br>Corporatio | e copied o<br>n — © Copy | or used<br>vright — | in any way w<br>- FC Cuny Cor |

|                   |                     |                       |                      |                      |                                                     |                               | Revis         | ion                |
|-------------------|---------------------|-----------------------|----------------------|----------------------|-----------------------------------------------------|-------------------------------|---------------|--------------------|
|                   |                     | <u>5 YR S</u>         | <u>STORM</u>         |                      |                                                     |                               |               |                    |
| nditions<br>A     |                     | EVELOPED<br>AGE AREAS | -                    | pass Flow<br>Q = CIA | DRAINAGE AREAS                                      |                               |               |                    |
| 1.31<br>0.35      |                     | 1                     | A =<br>C =           | 0.18                 | 1,8                                                 |                               |               |                    |
| 20<br>4.90        |                     |                       | Tc =                 | 10<br>6.10           |                                                     |                               |               |                    |
| 2.25              | cfs                 |                       | Q5=                  | 0.99                 | cfs                                                 |                               |               |                    |
| 2.25              | cfs                 | A 11                  | Q5 TOTAL=            |                      | 0.99 cfs                                            |                               |               |                    |
|                   | Q5.                 | Allowable =           | = 1.26 c             | TS                   |                                                     |                               |               |                    |
|                   | Future (<br>Q = CIA | Conditions            | DRAINAGE<br>AREAS    |                      |                                                     |                               |               |                    |
|                   | A =<br>C =          | 0.81                  | 2, 7                 |                      |                                                     |                               |               |                    |
|                   | Tc =                | 10                    |                      |                      |                                                     |                               |               | 1<br>1             |
|                   | l5 =<br>Q5 =        | 6.10<br>4.45          | cfs                  |                      |                                                     |                               | <i>Owner:</i> |                    |
|                   | Flov                | w for Storm           | Durations            |                      |                                                     |                               | $O_W$         | ļ                  |
| ٦                 | ïme<br>10           | l<br>6.10             | C C C 0.90 4.4       |                      |                                                     |                               |               |                    |
|                   | 15<br>20            | 5.60<br>4.90          | 0.90 4.0<br>0.90 3.5 | 08                   |                                                     |                               |               | DUL +DURDER        |
|                   | 30                  | 4.00                  | 0.90 2.9             | 92                   |                                                     |                               |               | C. C.              |
|                   | 40<br>50            | 3.40<br>2.90          | 0.90 2.4<br>0.90 2.1 | 11                   |                                                     |                               |               |                    |
|                   | 60<br>70            | 2.60<br>2.40          | 0.90 1.9<br>0.90 1.7 | 75                   |                                                     |                               |               |                    |
|                   | 80<br>90            | 2.20<br>2.10          | 0.90 1.6<br>0.90 1.5 | 53                   |                                                     |                               |               |                    |
|                   | 100<br>110          | 1.90<br>1.70          | 0.90 1.3<br>0.90 1.2 | 39                   |                                                     |                               |               |                    |
|                   | Calculat            |                       |                      |                      |                                                     |                               |               |                    |
|                   |                     |                       |                      |                      |                                                     |                               |               |                    |
| Inflow            |                     | 2668                  | Storage =            | 1913                 |                                                     |                               |               |                    |
| Outflov           |                     | 755                   |                      |                      |                                                     |                               |               |                    |
| Inflow            |                     | 3674                  | Storage =            | 2730                 |                                                     |                               |               | ì                  |
| Outflov           | V                   | 944                   |                      |                      |                                                     |                               |               | er ~               |
| Inflow            | 20 min              | 1287                  | Storage =            | 3154                 |                                                     |                               |               | Engineer           |
| Outflov           |                     | 133                   |                      |                      |                                                     |                               |               | -ng                |
| Inflow            | 30 min              | 5249                  | Storage =            | 3739                 |                                                     |                               |               | /il I              |
| Outfloy           |                     | 1510                  | storage =            | 5/55                 |                                                     |                               |               | Civil              |
|                   | 40 min              |                       |                      |                      |                                                     |                               |               | 2                  |
| Inflow<br>Outfloy |                     | 5949<br>1888          | Storage =            | 4061                 |                                                     |                               |               |                    |
|                   | 50 min              |                       |                      |                      |                                                     |                               |               |                    |
| Inflow<br>Outfloy |                     | 5342<br>2265          | Storage =            | 4077                 |                                                     |                               |               |                    |
|                   | 60 min              |                       |                      |                      |                                                     |                               |               | <                  |
| Inflow<br>Outflov | 6                   | 5823<br>2643          | Storage =            | 4181                 |                                                     |                               |               |                    |
|                   | 70 min              |                       |                      |                      |                                                     |                               |               |                    |
| nflow<br>Dutflov  |                     | 7348<br>8020          | Storage =            | 4328                 |                                                     |                               |               |                    |
|                   |                     |                       |                      |                      |                                                     |                               | <b> </b>      |                    |
| Inflow            |                     | 7698                  | Storage =            | 4300                 |                                                     |                               |               |                    |
| Outflov           |                     | 3398                  |                      |                      |                                                     |                               | ТО            |                    |
| Inflow            |                     | 3267                  | Storage =            | 4492                 | Storage Required = 4492 CF                          |                               | -             | - S                |
| Outflow           | v 3                 | 3775                  |                      |                      |                                                     |                               | M             | AF                 |
| 1<br>Inflow       | 00 min<br>8         | 3311                  | Storage =            | 4158                 |                                                     |                               |               | _                  |
| Outfloy           |                     | 153                   | Storage -            | -1.00                |                                                     |                               |               | E. II<br>CKV       |
|                   | 10 min              | 3179                  | Ctore                | 2040                 |                                                     |                               |               |                    |
| Inflow<br>Outflov |                     | 179<br>1530           | Storage =            | 3649                 |                                                     |                               |               | 1                  |
|                   |                     |                       |                      |                      |                                                     |                               |               |                    |
|                   |                     |                       |                      |                      |                                                     |                               |               | × ; ;              |
|                   |                     |                       |                      |                      |                                                     |                               |               | CAI<br>PROT        |
|                   |                     |                       |                      |                      |                                                     |                               |               |                    |
|                   |                     |                       |                      |                      |                                                     |                               | /             | 1                  |
|                   |                     |                       |                      |                      |                                                     |                               | Dro           | awn By:            |
|                   |                     |                       |                      |                      |                                                     |                               |               | CUNY               |
|                   |                     |                       |                      |                      |                                                     |                               | 11/           | Date:<br>/19/2018  |
|                   |                     |                       |                      |                      |                                                     |                               |               | eet Title:<br>P    |
|                   |                     |                       |                      |                      |                                                     |                               |               | Cal                |
|                   |                     |                       |                      |                      | nd may not be copied or used in any way without the | SP 2018-029<br>RECORD DRAWING |               | Scale:<br>N. T. S. |
|                   |                     |                       |                      |                      | uny Corporation – © Copyright – FC Cuny Corporation | RECORD DRAWING                |               |                    |

| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 755  |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 944  |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 1133 | 51010                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Store                                                                                                                                                                                                                                                                                                                                                                                |
| 1510 | Stora                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                      |
|      | <b>C</b> :                                                                                                                                                                                                                                                                                                                                                                           |
|      | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 1888 |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
| 6342 | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 2265 |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
| 6823 | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 2643 |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
| 7348 | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 3020 |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
| 7698 | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 3398 |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Stora                                                                                                                                                                                                                                                                                                                                                                                |
| 3775 |                                                                                                                                                                                                                                                                                                                                                                                      |
| min  |                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Store                                                                                                                                                                                                                                                                                                                                                                                |
| 4153 | Stora                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                      |
|      | <u></u>                                                                                                                                                                                                                                                                                                                                                                              |
|      | Stora                                                                                                                                                                                                                                                                                                                                                                                |
|      | min3674944944113342871133524952491510594918881888188812011201120213131459491888188818881888188818881888188818881888188818881888188818881888188818881888188818881888188818881888188818881888188818881888189119941995199519951996199719981998199819981998199919991999199919991999199919991999199919991999199919991999199919991999199919991999199919991999199919991999199919991999 </td |

| 3     |
|-------|
| 41    |
| 1     |
| 29    |
| 152   |
| 8     |
| 50.27 |
| 7640  |
|       |

CHAMBER DETENTION VOLUME CALCULATIONS

Inflow 9623 Outflow 5598

Storage Required = 6060 CF

| Future Co  | nditions | DRAINAGE |
|------------|----------|----------|
| Q = CIA    |          | AREAS    |
| A =        | 0.81     | 2, 7     |
| <b>C</b> = | 0.90     |          |
| Tc =       | 10       |          |
| 110 =      | 7.10     |          |
| Q10 =      | 5.18     | cfs      |

| Flow for Storm Durations |      |      |      |  |  |  |  |  |
|--------------------------|------|------|------|--|--|--|--|--|
| Time                     | I    | С    | Q    |  |  |  |  |  |
| 10                       | 7.10 | 0.90 | 5.18 |  |  |  |  |  |
| 15                       | 6.50 | 0.90 | 4.74 |  |  |  |  |  |
| 20                       | 5.90 | 0.90 | 4.30 |  |  |  |  |  |
| 30                       | 4.90 | 0.90 | 3.57 |  |  |  |  |  |
| 40                       | 4.00 | 0.90 | 2.92 |  |  |  |  |  |
| 50                       | 3.40 | 0.90 | 2.48 |  |  |  |  |  |
| 60                       | 3.00 | 0.90 | 2.19 |  |  |  |  |  |
| 70                       | 2.80 | 0.90 | 2.04 |  |  |  |  |  |
| 80                       | 2.60 | 0.90 | 1.90 |  |  |  |  |  |
| 90                       | 2.40 | 0.90 | 1.75 |  |  |  |  |  |
| 100                      | 2.20 | 0.90 | 1.60 |  |  |  |  |  |
| 110                      | 2.00 | 0.90 | 1.46 |  |  |  |  |  |

| Storage Ca | alculations |               |      |                    |        |
|------------|-------------|---------------|------|--------------------|--------|
|            |             |               |      |                    |        |
|            | min         |               |      |                    |        |
| Inflow     | 3106        | <br>Storage = | 2173 |                    |        |
| Outflow    | 933         |               |      |                    |        |
| 15         | min         |               |      |                    |        |
| Inflow     | 4265        | Storage =     | 3098 |                    |        |
| Outflow    | 1166        |               |      |                    |        |
| 20         | min         |               |      |                    |        |
| Inflow     | 5161        | Storage =     | 3762 |                    |        |
| Outflow    | 1399        | Storage -     | 5702 |                    |        |
| outiow     | 1355        |               |      |                    |        |
| 30         | min         |               |      |                    |        |
| Inflow     | 6430        | <br>Storage = | 4564 |                    |        |
| Outflow    | 1866        |               |      |                    |        |
| 40         | min         |               |      |                    |        |
| Inflow     | 6998        | Storage =     | 4666 |                    |        |
| Outflow    | 2332        |               |      |                    |        |
|            |             |               |      |                    |        |
| 50         | min         |               |      |                    |        |
| Inflow     | 7436        | Storage =     | 4637 |                    |        |
| Outflow    | 2799        |               |      |                    |        |
| 60         | min         |               |      |                    |        |
| Inflow     | 7873        | Storage =     | 4608 |                    |        |
| Outflow    | 3265        | 0             |      |                    |        |
|            |             |               |      |                    |        |
| 70         | min         |               |      |                    |        |
| Inflow     | 8573        | Storage =     | 4841 |                    |        |
| Outflow    | 3732        |               |      |                    |        |
| 80         | min         |               |      |                    |        |
| Inflow     | 9098        | Storage =     | 4900 | Storage Required = | 4900 C |
| Outflow    | 4198        | 8-            |      |                    |        |
|            |             |               |      |                    |        |
|            | min         |               |      |                    |        |
| Inflow     | 9448        | Storage =     | 4783 |                    |        |
| Outflow    | 4665        |               |      |                    |        |
| 100        | min         |               |      |                    |        |
| Inflow     | 9623        | Storage =     | 4491 |                    |        |
| Outflow    | 5131        | 210.000       |      |                    |        |
|            |             |               |      |                    |        |
| 110        | min         |               |      |                    |        |

Storage = 4025

|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | Revision    | Date                     | Description                                  |
|-------------------------|---------------------|-----------------|-------------------|-------------------|-----------------------------|----------------------------|--------------------------|-------------------------------------------|---|------|---------|----|-------------|--------------------------|----------------------------------------------|
| M                       |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
| B                       | ypass<br>Q = C      |                 | /                 |                   | DRAINA                      | GE AREAS                   |                          |                                           |   |      |         |    |             |                          |                                              |
| :                       |                     | 0.              | 18<br>90          |                   |                             | ,8                         | _                        |                                           |   |      |         |    |             |                          |                                              |
| =                       |                     | 1               | 10                |                   |                             |                            | -                        |                                           |   |      |         |    | <u> </u>    |                          |                                              |
| =<br>TOTAL=             |                     |                 | 99                | 0.99              | cfs                         |                            | -                        |                                           |   |      |         |    |             |                          |                                              |
| 1.26                    |                     |                 |                   | 0.55              |                             |                            | -                        |                                           |   |      |         |    |             |                          |                                              |
|                         | CIS                 |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | Ţ.P.                     |                                              |
| AINAGE<br>AREAS         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | J, L                     |                                              |
| 2, 7                    |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | lote                     | A-120<br>5032<br>1-9225                      |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | 3 <i>T:</i> | SH                       | d, A-<br>750:<br>90-93                       |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | Owner:      | Greencrest TPS Hotel, L. | : Road, A-120<br>l, TX 75032<br>14) 890-9225 |
|                         | Q                   |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | rest                     | dge<br>val<br>(2                             |
| ) 4                     | .45<br>.08          |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | enci                     | 3021 Ria<br>Rockv<br>Phone:                  |
| ) 2                     | .57<br>.92          |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | jrea                     | 30)<br>1<br>Pł                               |
| ) 2                     | .48<br>.11          |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | $\bigcirc$               |                                              |
| ) 1                     | .90<br>.75<br>.60   |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
| ) 1                     | .60<br>.53<br>.39   |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
|                         | .39<br>.24          |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
| Storage                 | _                   | 1/              | 913               |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
| Storage                 | -                   | T               | 213               |                   |                             |                            |                          |                                           |   |      |         |    |             | NC                       | -7700                                        |
| Storage                 | _                   | 2.              | 730               |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | 7449<br>7449                                 |
| JUIAge                  |                     | 2               | /50               |                   |                             |                            |                          |                                           |   |      |         |    |             | $\Gamma \sim D$          | L 159 L                                      |
| Storage                 | _                   | 2,              | 154               |                   |                             |                            |                          |                                           |   |      |         |    |             | Civil Engineer           | 75032 • (1                                   |
| Storage                 |                     | J.              | 134               |                   |                             |                            |                          |                                           |   |      |         |    |             | Engi<br>DP               | Engineering                                  |
| Storage                 | _                   | 3.              | 739               |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | Heath, 7<br>Stered En                        |
| Storage                 |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | Ci                       |                                              |
| Storage                 | =                   | 4(              | 061               |                   |                             |                            |                          |                                           |   |      |         |    |             | $^{2}$ C                 | izon Court<br>Texas Re                       |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
| Storage                 | =                   | 4(              | 077               |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | #2 +                                         |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | 67 W                                         |
| Storage                 | =                   | 4:              | 181               |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
| Storage                 | =                   | 43              | 328               |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | ┝──         |                          |                                              |
| Storage                 | =                   | 43              | 300               |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | TO          | WN                       | EPLACE                                       |
| Storage                 | =                   | 44              | 492               | Stor              | rage Requi                  | ired =                     | 4492 CF                  |                                           |   |      |         |    |             |                          | ITES ——                                      |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | M /         | ٩R                       | RIOTT                                        |
| Storage                 | =                   | 4               | 158               |                   |                             |                            |                          |                                           |   |      |         |    | 000         | דיאו ב                   |                                              |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | ERSTATE 30<br>LL, TX 75087                   |
| Storage                 | =                   | 30              | 649               |                   |                             |                            |                          |                                           |   |      |         |    | <u> </u>    |                          |                                              |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | 23/2021                                      |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | S, A, F, E               | A Ctas                                       |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | ON A. SLOWN<br>06317                         |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | CENSE?                                       |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | /           | 7,"                      |                                              |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | Dra         | wn By:                   | Checked By:                                  |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             | CUNY<br>Date:            | F.C. CUNY<br>Project No.:                    |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    | 11/         | 9/2018                   | -                                            |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          | nd #1                                        |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   | SP 2 | 2018-02 | 29 |             | Calci<br>cale:           | ulations<br>Sheet No.:                       |
| This drawi<br>written p | ng is p<br>permissi | roprie<br>on oi | etary d<br>f FC ( | and ma<br>Cuny Ca | y not be co<br>prporation — | opied or use<br>©Copyright | d in any wa<br>– FC Cuny | ay without th <del>e</del><br>Corporation | R |      | D DRA   |    |             | . T. S.                  | 12a of 14                                    |
|                         |                     |                 |                   |                   |                             |                            |                          |                                           |   |      |         |    |             |                          |                                              |

| 100 | YR | STORM |
|-----|----|-------|

| <u>100 YR</u>                                | <u>STORM</u> |                     |       |     |                                                       |
|----------------------------------------------|--------------|---------------------|-------|-----|-------------------------------------------------------|
|                                              |              |                     |       |     |                                                       |
| 100 YEAR 96" PIPE STORAGE CAL                | CULATION     |                     |       |     |                                                       |
| PIPE DIAMETER (in.)                          | 96.00        |                     |       |     |                                                       |
| AREA OF PIPE (SF)                            | 50.27        |                     |       |     |                                                       |
| LENGTH OF PIPE (FT)                          | 152.00       |                     |       |     |                                                       |
| PIPE AREA ITERATIONS (GIVEN d                | > RADIUS)    |                     |       |     |                                                       |
| INPUT d (in)                                 | 92.52        | <= USER             | INPUT |     | <u>100YR WSEL</u>                                     |
| h = 2R-d                                     | 3.48         |                     |       |     |                                                       |
| ø = 2arccos((r-h)/r)                         | 0.77         |                     |       |     | $\frac{533.03 + 92.52/12}{533.03 + 92.52/12} = 540.7$ |
| $K = (r^{2}(\emptyset - \sin(\emptyset)))/2$ | 0.58         |                     |       |     |                                                       |
| A = ∏r^2 - K                                 | 49.68        |                     |       |     |                                                       |
| PROVIDED VOLUME (96 in. PIPE)                | 7552         |                     |       |     |                                                       |
|                                              |              |                     |       |     |                                                       |
|                                              |              |                     |       |     |                                                       |
| CIRCLE                                       |              |                     |       |     |                                                       |
|                                              | TION         |                     |       |     |                                                       |
| Equation: Q = Cd*A*((2                       | *g*H)^0.5)   |                     | FL=   | 6   |                                                       |
| Q =                                          | 0.20         | ft³/sec             |       |     |                                                       |
| Cd =                                         | 0.62         |                     |       |     |                                                       |
| g =                                          | 32.20        | ft/sec <sup>2</sup> |       |     |                                                       |
| H =                                          | 1.61         | ft                  |       |     |                                                       |
| A = PI*R^2                                   | 0.03         | ft²                 |       |     |                                                       |
| D =                                          | 2.40         | in                  |       |     | _                                                     |
| R =                                          | 1.20         | in                  |       |     |                                                       |
| CIRCLE                                       |              |                     |       |     |                                                       |
| ORIFICE CALCULA                              |              |                     |       |     |                                                       |
| Equation: Q = Cd*A*((2                       | *g*H)^0.5)   |                     | FL=   | 2.5 |                                                       |
| Q =                                          | 0.35         | ft³/sec             |       |     |                                                       |
| Cd =                                         | 0.62         |                     |       |     |                                                       |
| g =                                          | 32.20        | ft/sec <sup>2</sup> |       |     |                                                       |
| H =                                          | 5.11         | ft                  |       |     |                                                       |
| A = PI*R^2                                   | 0.03         | ft²                 |       |     |                                                       |
| D =                                          | 2.40         | in                  |       |     |                                                       |
| R =                                          | 1.20         | in                  |       |     |                                                       |
|                                              |              |                     |       |     |                                                       |
|                                              |              |                     |       |     |                                                       |
| RECTANGULAR                                  |              |                     |       |     |                                                       |
| ORIFICE CALCULATION                          |              |                     |       |     |                                                       |
| Equation: Q = Cd*A*((2                       | *g*H)^0.5)   |                     | FL=   | 0   |                                                       |
| Q =                                          | 1.64         | ft³/sec             |       |     |                                                       |
| Cd =                                         | 0.62         |                     |       |     |                                                       |
| g =                                          | 32.20        | ft/sec <sup>2</sup> |       |     |                                                       |
| H =                                          | 7.59         | ft                  |       |     |                                                       |
| A = BH                                       | 0.12         | ft²                 |       |     |                                                       |
| B =                                          | 5.75         | in                  |       |     |                                                       |
| H=                                           | 3.00         | in                  |       |     |                                                       |

| OF |    | STORN                       |
|----|----|-----------------------------|
| 77 | ΥR | $\gamma \mu \kappa \lambda$ |
|    |    |                             |

| <u>25 YR STORM</u>                         |                           |         |                                                            | <u>10</u>                                  | YR STORM                  |                                 |                                                       | <u>5 YR STORM</u>         |                          | Revision Date | Description                                                  |
|--------------------------------------------|---------------------------|---------|------------------------------------------------------------|--------------------------------------------|---------------------------|---------------------------------|-------------------------------------------------------|---------------------------|--------------------------|---------------|--------------------------------------------------------------|
|                                            |                           |         |                                                            | 10 YEAR 96" PIPE STORAGE CAL               | CULATION                  |                                 | 5 YEAR 96" PIPE STORAGE                               | CALCULATION               |                          |               |                                                              |
| 25 YEAR 96" PIPE STORAGE CALCUL            | ATION                     |         |                                                            | PIPE DIAMETER (in.)                        | 96.00                     |                                 | PIPE DIAMETER (in.)                                   | 96.00                     |                          |               |                                                              |
| PIPE DIAMETER (in.)                        | 96.00                     |         |                                                            | AREA OF PIPE (SF)                          | 50.27                     |                                 | AREA OF PIPE (SF)                                     | 50.27                     |                          |               |                                                              |
| AREA OF PIPE (SF)                          | 50.27                     |         |                                                            | LENGTH OF PIPE (FT)                        | 152.00                    |                                 | LENGTH OF PIPE (FT)                                   | 152.00                    | <u>5YR WSEL</u>          |               |                                                              |
| LENGTH OF PIPE (FT)                        | 152.00                    |         |                                                            | PIPE AREA ITERATIONS (GIVEN (              | I> RADIUS)                |                                 | PIPE AREA ITERATIONS (GIV                             |                           | <u>STR WSLE</u>          |               |                                                              |
| PIPE AREA ITERATIONS (GIVEN d> R           |                           |         |                                                            | INPUT d (in)                               | 58.75 <= USER INPUT       | <u>10YR WSEL</u>                | INPUT d (in)                                          | 54.65 <= USER INPUT       | 533.03+54.65/12 = 537.58 |               |                                                              |
| INPUT d (in)                               | 71.02 <= USER             | INPUT   | <u>25YR WSEL</u>                                           | h = 2R-d                                   | 37.25                     | <u>·····</u>                    | h = 2R-d                                              | 41.35                     |                          |               |                                                              |
| h = 2R-d                                   | 24.98                     |         |                                                            | ø = 2arccos((r-h)/r)                       | 2.69                      | <u>533.03+58.75/12 = 537.93</u> | $\frac{11-217}{0} = 2 \operatorname{arccos}((r-h)/r)$ | 2.86                      |                          |               |                                                              |
| $\phi = 2 \operatorname{arccos}((r-h)/r)$  | 2.14                      |         | $\frac{533.03 + 71.02/12}{533.03} = \frac{538.95}{533.03}$ | $K = (r^2(\emptyset - \sin(\emptyset)))/2$ | 18.03                     |                                 | $K = (r^2(\emptyset - \sin(\emptyset)))/2$            | 20.71                     |                          |               |                                                              |
| $K = (r^2(\emptyset - \sin(\emptyset)))/2$ | 10.40                     |         |                                                            | $A = \prod r^2 - K$                        | 32.24                     |                                 | $A = \pi r^2 - K$                                     | 29.55                     |                          |               |                                                              |
| A = ∏r^2 - K                               | 39.87                     |         |                                                            | PROVIDED VOLUME (96 in. PIPE)              | 4900                      |                                 | PROVIDED VOLUME (96 in. PIPE                          |                           |                          |               |                                                              |
| PROVIDED VOLUME (96 in. PIPE)              | 6060                      |         |                                                            |                                            |                           |                                 |                                                       |                           |                          | .Р.           |                                                              |
|                                            |                           |         |                                                            |                                            |                           |                                 |                                                       |                           |                          | el, L         |                                                              |
| CIRCLE                                     |                           |         |                                                            | CIRCLE                                     |                           |                                 | RECTANGULAR                                           |                           |                          | Hotel,        | Ridge Road, A-120<br>ockwall, TX 75032<br>ne: (214) 890-9225 |
| ORIFICE CALCULATION                        |                           |         |                                                            |                                            |                           |                                 | ORIFICE CAL                                           | CULATION                  |                          |               | 50<br>-9                                                     |
| Equation: $Q = Cd^{A}((2^{g}H)^{0.5})$     | (1a/                      | FL= 2.5 | _                                                          | Equation: Q = Cd*A*((2                     |                           |                                 | Equation: Q = Cd*                                     | *A*((2*g*H)^0.5) FL= 0    |                          | ner:<br>PS    | d, 7<br>90                                                   |
| Q =                                        | 0.28 ft3/sec              |         |                                                            | Q =                                        | 0.24 ft³/sec              |                                 | Q =                                                   | 1.25 ft³/sec              |                          |               | oa<br>8 (                                                    |
| Cd =                                       | 0.62                      |         |                                                            | Cd =                                       | 0.62                      |                                 | Cd =                                                  | 0.62                      |                          | OW<br>t T     | $  \mathbf{X}_{\mathbf{L}} \mathbf{A} $                      |
| g =                                        | 32.20 ft/sec <sup>2</sup> |         |                                                            | g =                                        | 32.20 ft/sec <sup>2</sup> |                                 | g =                                                   | 32.20 ft/sec <sup>2</sup> |                          | est           | all 21                                                       |
| H =                                        | 3.32 ft                   |         |                                                            | H =                                        | 2.30 ft                   |                                 | H =                                                   | 4.43 ft                   |                          | G             | idi<br>w:w:                                                  |
| A = PI*R^2                                 | 0.03 ft <sup>2</sup>      |         |                                                            | A = PI*R^2                                 | 0.03 ft <sup>2</sup>      |                                 | A = BH                                                | 0.12 ft <sup>2</sup>      |                          | CI            | le R                                                         |
| D =                                        | 2.40 in                   |         |                                                            | D =                                        | 2.40 in                   |                                 | В =                                                   | 5.75 in                   |                          | uc            |                                                              |
| R =                                        | 1.20 in                   |         |                                                            | R =                                        | 1.20 in                   |                                 | H=                                                    | 3.00 in                   |                          | iree          | 302<br>Re<br>Pho                                             |
| RECTANGULAR                                |                           |         | _                                                          | RECTANGULAR                                |                           |                                 | <u>5YR</u>                                            | Qallowable = 1.26 cfs     |                          | 9             |                                                              |
| ORIFICE CALCULATION                        |                           |         |                                                            | ORIFICE CALCULATION                        |                           |                                 |                                                       |                           |                          |               |                                                              |
| Equation: Q = Cd*A*((2*g*H                 | I)^0.5)                   | FL= 0   |                                                            | Equation: Q = Cd*A*((2                     | *g*H)^0.5) FL= 0          |                                 | <u>(</u>                                              | <u> Qtotal = 1.25 cfs</u> |                          |               |                                                              |
| Q =                                        | 1.43 ft3/sec              |         |                                                            | Q =                                        | 1.30 ft³/sec              |                                 |                                                       |                           |                          |               |                                                              |
| Cd =                                       | 0.62                      |         |                                                            | Cd =                                       | 0.62                      |                                 |                                                       |                           |                          |               |                                                              |
| g =                                        | 32.20 ft/sec <sup>2</sup> |         |                                                            | g =                                        | 32.20 ft/sec <sup>2</sup> |                                 |                                                       |                           |                          |               |                                                              |
| H =                                        | 5.79 ft                   |         |                                                            | н =                                        | 4.77 ft                   |                                 |                                                       |                           |                          |               |                                                              |
| A = BH                                     | 0.12 ft <sup>2</sup>      |         |                                                            | A = BH                                     | 0.12 ft <sup>2</sup>      |                                 |                                                       |                           |                          |               |                                                              |
|                                            | 5.75 in                   |         | _                                                          | B =                                        | 5.75 in                   |                                 |                                                       |                           |                          |               |                                                              |
| B =                                        |                           |         |                                                            |                                            |                           |                                 |                                                       |                           |                          |               |                                                              |

<u> 25YR Qallowable = 1.77 cfs</u>

<u>Qtotal = 1.43+0.28 = 1.71 cfs</u>

<u> 100YR Qallowable = 2.22 cfs</u>

<u>Q total = 1.64+0.35+0.20 = 2.19 cfs</u>

<u> 10YR Qallowable = 1.55 cfs</u>

<u>Qtotal = 1.30+0.24 = 1.54 cfs</u>

TION (192-770) ~ Civil Engineer ~ CUNY CORPOR/ court • Heath, Texas 75032 • (46 cos Registered Engineering Firm F-<u>F.C. C</u> #2 Horizon C TOWNEPLACE MARRIOTT 908 E. INTERSTATE 30 ROCKWALL, TX 75087 | 2/23/202 | CAMERON A. SLOWN Ľa. Drawn By: Checked By: F.C. CUNY F.C. CUNY Date: 11/19/2018 Project No.: – Sheet Title: Pond #1 Calculations Sheet No.: Scale: 12b of 14 N. T. S.

SP 2018-029 **RECORD DRAWING** 

## <u>25 YR STORM</u>

| 100 |    | STORI               |
|-----|----|---------------------|
|     | IR | $\Delta I \cup R I$ |
|     |    |                     |

| Present ( | Conditions | PRE. DEVELOPED   | Вур        | ass Flow (AREA 6) |                |     |  |
|-----------|------------|------------------|------------|-------------------|----------------|-----|--|
| Q =       | CIA        | DRAINAGE AREAS   |            | Q = CIA           | DRAINAGE AREAS |     |  |
| A =       | 1.49       | 2                | A =        | 0.12              | 6              |     |  |
| C =       | 0.35       |                  | C =        | 0.90              |                |     |  |
| Tc =      | 20         |                  | Tc =       | 10                |                |     |  |
| 100 =     | 8.30       |                  | 1100 =     | 9.80              |                |     |  |
| Q100 =    | 4.33       | cfs              | Q100 =     | 1.06              |                | cfs |  |
| Q100 =    | 4.33       | cfs              | Q100 TOTAL | =                 | 1.06           | cfs |  |
|           |            | Q100 Allowable = | 6.41       | cfs               |                |     |  |

| Future Co  | nditions | DRAINAGE | Of      | Offsite Pass-Through |      |              |  |  |
|------------|----------|----------|---------|----------------------|------|--------------|--|--|
| Q = CIA    |          | AREAS    | Q = CIA |                      |      | AREAS        |  |  |
| A =        | 1.71     | 3,4,5,9  | A =     | 0.98                 | 0.03 | OS-1, OS-3.3 |  |  |
| <b>C</b> = | 0.90     |          | C =     | 0.35                 | 0.90 |              |  |  |
| Tc =       | 10       |          | Tc =    | 20                   | 10   |              |  |  |
| 1100 =     | 9.80     |          | 1100 =  | 8.30                 | 9.80 |              |  |  |
| Q100 =     | 15.08    | cfs      | Q100 =  | 2.85                 | 0.29 | cfs          |  |  |

| F    | low for Sto | rm Duration | IS    |
|------|-------------|-------------|-------|
| Time | I           | Cw          | Q     |
| 10   | 9.80        | 0.70        | 18.73 |
| 15   | 9.00        | 0.70        | 17.21 |
| 20   | 8.30        | 0.70        | 15.87 |
| 30   | 6.90        | 0.70        | 13.19 |
| 40   | 5.80        | 0.70        | 11.09 |
| 50   | 5.00        | 0.70        | 9.56  |
| 60   | 4.50        | 0.70        | 8.60  |
| 70   | 4.00        | 0.70        | 7.65  |
| 80   | 3.70        | 0.70        | 7.07  |
| 90   | 3.50        | 0.70        | 6.69  |
| 100  | 3.40        | 0.70        | 6.50  |
| 110  | 3.20        | 0.70        | 6.12  |

| Storage Ca | alculations |           |       |
|------------|-------------|-----------|-------|
| 10         | min         |           |       |
| Inflow     | 11241       | Storage = | 7396  |
| Outflow    | 3845        |           |       |
| 15         | min         |           |       |
| Inflow     | 15485       | Storage = | 10679 |
| Outflow    | 4806        |           |       |
| 20         | min         |           |       |
| Inflow     | 19041       | Storage = | 13273 |
| Outflow    | 5767        |           |       |
| 30         | min         |           |       |
| Inflow     | 23743       | Storage = | 16054 |
| Outflow    | 7690        |           |       |
| 40         | min         |           |       |
| Inflow     | 26611       | Storage = | 16999 |
| Outflow    | 9612        |           |       |
| 50         | min         |           |       |
| Inflow     | 28676       | Storage = | 17141 |
| Outflow    | 11534       |           |       |
| 60         | min         |           |       |
| Inflow     | 30970       | Storage = | 17513 |
| Outflow    | 13457       |           |       |
| 70         | min         |           |       |
| Inflow     | 32117       | Storage = | 16737 |
| Outflow    | 15379       |           |       |
| 80         | min         |           |       |
| Inflow     | 33952       | Storage = | 16650 |
| Outflow    | 17302       |           |       |
| 90         | min         |           |       |
| Inflow     | 36131       | Storage = | 16907 |
| Outflow    | 19224       |           |       |
| 100        | min         |           |       |
| Inflow     | 38999       | Storage = | 17852 |
| Outflow    | 21146       |           |       |
| 110        | min         |           |       |
| Inflow     | 40375       | Storage = | 17306 |
| Outflow    | 23069       |           |       |

Storage Required = 17852 CF

| Present    | t Conditio | ns PR   | e. deve | LOPED  | U          | E          | Sypa | ss Flow | (Al | REA 6) |      |          |           |   |
|------------|------------|---------|---------|--------|------------|------------|------|---------|-----|--------|------|----------|-----------|---|
| Q          | l = CIA    | DRA     | AINAGE  | AREAS  | 5          |            |      | Q = C   | IA  |        |      | DRAIN    | AGE AREAS | S |
| A =        | 1.49       |         | 2       |        |            | A =        |      |         | 0   | .12    |      |          | 6         |   |
| <b>C</b> = | 0.35       |         |         |        |            | <b>C</b> = |      |         | 0   | .90    |      |          |           |   |
| Tc =       | 20         |         |         |        |            | Tc =       |      |         |     | 10     |      |          |           |   |
| 125 =      | 6.80       |         |         |        |            | 125 =      |      |         | 8   | .30    |      |          |           |   |
| Q25 =      | 3.55       | cfs     |         |        |            | Q25 =      |      |         | 0   | .90    |      | cfs      |           |   |
| Q25 =      | 3.55       | cfs     |         |        |            | Q25 TO     | TAL  | =       |     |        | 0.90 | cfs      |           |   |
|            |            |         |         |        |            |            |      |         |     |        |      |          |           |   |
|            |            |         | Q25 All | owable | 9 =        | 5          | 5.23 | cfs     |     |        |      |          |           |   |
| F          | uture Cor  | ditions | DRAI    | NAGE   |            | Offsi      | te P | ass-Thr | oug | h      | DRA  | INAGE    |           |   |
| C          | Q = CIA    |         | AR      | EAS    | Q =        | = CIA      |      |         |     |        | A    | REAS     |           |   |
|            | A =        | 1.71    | 3,4     | ,5,9   | A =        |            | (    | 0.98    |     | 0.03   | OS-1 | , OS-3.3 |           |   |
| C          | C =        | 0.90    |         |        | <b>C</b> = | -          | (    | 0.35    |     | 0.90   |      |          |           |   |
| Т          | Гс =       | 10      |         |        | Tc         | =          |      | 20      |     | 10     |      |          |           |   |
| Ľ          | 25 =       | 8.30    |         |        | 125        | 5 =        |      | 6.80    |     | 8.30   |      |          |           |   |
| C          | Q25 =      | 12.77   | cfs     |        | Q2         | 5 =        |      | 2.33    |     | 0.25   | cfs  |          |           |   |

| Flow for Storm Durations |      |      |       |  |  |  |  |  |  |
|--------------------------|------|------|-------|--|--|--|--|--|--|
| Time                     | l.   | С    | Q     |  |  |  |  |  |  |
| 10                       | 8.30 | 0.70 | 15.87 |  |  |  |  |  |  |
| 15                       | 7.40 | 0.70 | 14.15 |  |  |  |  |  |  |
| 20                       | 6.80 | 0.70 | 13.00 |  |  |  |  |  |  |
| 30                       | 5.50 | 0.70 | 10.51 |  |  |  |  |  |  |
| 40                       | 4.70 | 0.70 | 8.98  |  |  |  |  |  |  |
| 50                       | 4.00 | 0.70 | 7.65  |  |  |  |  |  |  |
| 60                       | 3.50 | 0.70 | 6.69  |  |  |  |  |  |  |
| 70                       | 3.30 | 0.70 | 6.31  |  |  |  |  |  |  |
| 80                       | 3.10 | 0.70 | 5.93  |  |  |  |  |  |  |
| 90                       | 2.80 | 0.70 | 5.35  |  |  |  |  |  |  |
| 100                      | 2.60 | 0.70 | 4.97  |  |  |  |  |  |  |
| 110                      | 2.40 | 0.70 | 4.59  |  |  |  |  |  |  |

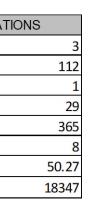
| storage Ca    | alculations  |           |
|---------------|--------------|-----------|
| 10            | min          |           |
| nflow         | 9520         | Storage = |
| Outflow       | 3137         | 0101080   |
|               |              |           |
| 15            | min          |           |
| nflow         | 12732        | Storage = |
| Outflow       | 3922         |           |
| 20            | min          |           |
| nflow         | 15599        | Storage - |
| Outflow       | 4706         | Storage = |
| Julliow       | 4706         |           |
| 30            | min          |           |
| nflow         | 18926        | Storage = |
| Outflow       | 6274         |           |
| 40            | min          |           |
|               |              | Charren   |
| nflow         | 21564        | Storage = |
| Outflow       | 7843         |           |
| 50            | min          |           |
| nflow         | 22940        | Storage = |
| Outflow       | 9412         |           |
| ~             | min          |           |
| nflow         | 24087        | Storago - |
|               |              | Storage = |
| Outflow       | 10980        |           |
| 70            | min          |           |
| nflow         | 26496        | Storage = |
| Outflow       | 12549        |           |
|               |              |           |
|               | min          |           |
| nflow         | 28446        | Storage = |
| Outflow       | 14118        |           |
| 90            | min          |           |
| nflow         | 28905        | Storage = |
| Outflow       | 15686        |           |
|               | •            |           |
| 100<br>Inflow | min<br>29823 | Charges   |
|               |              | Storage = |
| Outflow       | 17255        |           |
| 110           | min          |           |
| nflow         | 30281        | Storage = |
| Outflow       | 18823        |           |

| CHAMBER DETENTION VOLUM       | IE CALCULATIO |
|-------------------------------|---------------|
| NUMBER OF CHAMBERS =          |               |
| LENGTH OF CHAMBERS (FT) =     |               |
| NUMBER OF HEADERS =           |               |
| LENGTH OF HEADERS =           |               |
| TOTAL LENGTH OF CHAMBERS (FT) |               |
| CHAMBER DIAMETER (FT) =       |               |
| AREA OF CHAMBERS (SF)=        |               |
| VOLUME OF CHAMBERS (CF) =     |               |
|                               |               |

# <u>10 YR STORM</u>

Present Conditions PRE. DEVELOPED

Bypass Flow (AREA 6)


|   | _ |   | _ |  |
|---|---|---|---|--|
|   | 6 | 3 | 8 |  |
| - |   |   | - |  |

13721

13529 13107 13947

14329 Storage Required = 14329 CF

13219 12568 11458



| ų     | = CIA            | DRAIN     | IAGE A       | REAS       |              | Q =          | CIA   |              | DRAINAGE   | AREAS |       |
|-------|------------------|-----------|--------------|------------|--------------|--------------|-------|--------------|------------|-------|-------|
| A =   | 1.49             |           | 2            |            | 4 =          |              | 0.12  |              | 6          |       |       |
| C =   | 0.35             |           |              |            | C =          |              | 0.90  |              |            |       |       |
| Tc =  | 20               |           |              |            | Tc =         |              | 10    |              |            |       |       |
| 110 = | 5.90             |           |              |            | 10 =         |              | 7.10  |              | <i>c</i>   |       |       |
| Q10 = | 3.08             | cfs       |              |            | Q10 =        |              | 0.77  |              | cfs        |       |       |
| Q10 = | 3.08             | cfs       |              | (          | Q10 TOTA     | .L =         |       | 0.77         | cts        |       |       |
|       |                  | 01        |              | wable =    | 15           | 4 cfs        |       |              |            |       |       |
|       |                  |           | U AIIU       |            | 4.5          |              |       |              |            |       |       |
|       | nditions         | DRAIN     |              |            | te Pass-T    | hrough       |       | DRAINAGE     |            |       |       |
|       |                  | AREA      |              | Q = CIA    |              |              |       | AREAS        | _          |       |       |
|       | 1.71             | 3,4,5     |              | 4 =        | 0.98         | 0.0          |       | 0S-1, OS-3.3 | }          |       |       |
|       | 0.90             |           |              | C =        | 0.35         | 0.9          |       |              |            |       |       |
|       | 10               |           |              | Гс =       | 20           | 1            |       |              |            |       |       |
|       | 7.10             | -6-       |              | 25 =       | 5.90         | 7.1          |       | -            |            |       |       |
|       | 10.93            | cfs       | (            | 225 =      | 2.02         | 0.2          | 21 cf | S            |            |       |       |
|       | г                |           |              |            |              |              |       |              |            |       |       |
|       |                  |           | 1            | or Storm [ |              |              | _     |              |            |       |       |
|       |                  | Time      | J            |            | С            | Q            | _     |              |            |       |       |
|       | -                | 10        | 7.1          |            | 0.70         | 13.57        | _     |              |            |       |       |
|       | F                | 15        | 6.5          |            | 0.70         | 12.43        | -     |              |            |       |       |
|       | F                | 20        | 5.9          |            | 0.70         | 11.28        | -     |              |            |       |       |
|       | F                | 30<br>40  | 4.9          |            | 0.70         | 9.37<br>7.65 | -     |              |            |       |       |
|       |                  | 40<br>50  | 4.0<br>3.4   |            | 0.70<br>0.70 | 6.50         | -     |              |            |       |       |
|       | F                | 60        | 3.0          |            | 0.70         | 5.74         | -     |              |            |       |       |
|       | F                | 70        | 2.8          |            | 0.70         | 5.35         | -     |              |            |       |       |
|       | -                | 80        | 2.6          |            | 0.70         | 4.97         | -1    |              |            |       |       |
|       | F                | 90        | 2.4          |            | 0.70         | 4.59         | 1     |              |            |       |       |
|       | F                | 100       | 2.2          |            | 0.70         | 4.21         | 1     |              |            |       |       |
|       | F                | 110       | 2.0          |            | 0.70         | 3.82         |       |              |            |       |       |
|       |                  |           |              |            |              |              |       |              |            |       |       |
|       | Character        | e Calcula | Horal        |            |              |              |       | 1            |            |       |       |
|       | Storage          | e Calcula | lions        |            |              |              |       |              |            |       |       |
|       |                  | 10 min    |              |            |              |              |       |              |            |       |       |
|       | Inflow           |           | 8144         |            | Storag       | e =          | 5417  | -            |            |       |       |
|       | Outflo           |           | 2727         |            |              | ,-           |       |              |            |       |       |
|       |                  |           |              |            |              |              |       |              |            |       |       |
|       |                  | 15 min    |              |            |              |              |       | -            |            |       |       |
|       | Inflow           | 1         | 1183         |            | Storag       | e =          | 7775  | -            |            |       |       |
|       | Outflo           | w         | 3408         |            |              |              |       | -            |            |       |       |
|       |                  |           |              |            |              |              |       | -            |            |       |       |
|       | Inflow           | 20 min    | 2525         |            | Ctores       |              | 0445  | -            |            |       |       |
|       | Inflow<br>Outflo |           | 3535<br>4090 |            | Storag       | e =          | 9445  | -            |            |       |       |
|       | Outrio           | vv        | 4090         |            |              |              |       |              |            |       |       |
|       |                  | 30 min    |              |            |              |              |       |              |            |       |       |
|       | Inflow           | 1         | 6861         |            | Storag       | e =          | 11408 |              |            |       |       |
|       | Outflo           | w         | 5454         |            |              |              |       |              |            |       |       |
|       |                  |           |              |            |              |              |       | -            |            |       |       |
|       |                  | 40 min    |              |            |              |              |       | -            |            |       |       |
|       | Inflow           |           | 8352         |            | Storag       | e =          | 11535 | -            |            |       |       |
|       | Outflo           | vv        | 6817         |            |              |              |       | -            |            |       |       |
|       |                  | 50 min    |              |            |              |              |       |              |            |       |       |
|       | Inflow           |           | 9499         |            | Storag       | e =          | 11319 |              |            |       |       |
|       | Outflo           |           | 8180         |            |              |              |       |              |            |       |       |
|       |                  |           |              |            |              |              |       |              |            |       |       |
|       |                  | 60 min    |              |            |              |              |       |              |            |       |       |
|       | Inflow           |           | 0646         |            | Storag       | e =          | 11103 | -            |            |       |       |
|       | Outflo           | W         | 9544         |            |              |              |       |              |            |       |       |
|       |                  | 70        |              |            |              |              |       | -            |            |       |       |
|       | Inflow           | 70 min    | 2482         |            | Store        |              | 11575 |              |            |       |       |
|       | Outflo           |           | 2482<br>0907 |            | Storag       | ,e –         | 113/2 |              |            |       |       |
|       | e deno           |           |              |            |              |              |       |              |            |       |       |
|       |                  | 80 min    |              |            |              |              |       |              |            |       |       |
|       | Inflow           |           | 3858         |            | Storag       | e =          | 11588 | Storage      | Required = |       | 11588 |
|       | Outflo           | w 1       | 2270         |            |              |              |       |              |            |       |       |
|       |                  |           |              |            |              |              |       |              |            |       |       |
|       |                  | 90 min    |              |            |              |              |       | -            |            |       |       |
|       | Inflow           |           | 4776         |            | Storag       | ;e =         | 11142 | -            |            |       |       |
|       | Outflo           | w 1       | 3634         |            |              |              |       | -            |            |       |       |
|       |                  | 100 min   |              |            |              |              |       |              |            |       |       |
|       | Inflow           |           | 5234         |            | Storag       |              | 10237 | -            |            |       |       |
|       | Outflo           |           | 4997         |            | Storag       | ,e -         | 1023/ |              |            |       |       |
|       | Satio            | <u></u> L |              |            |              |              |       | -            |            |       |       |
|       |                  | 110 min   |              |            |              |              |       |              |            |       |       |
|       | -                |           |              |            |              |              |       | -            |            |       |       |
|       | Inflow           |           | 5234         |            | Storag       | e =          | 8874  |              |            |       |       |

|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     | Revision | Date                                      | Description                            |
|--------------|--------------------|------------------|------------|----------------------------|--------------|-----------------|-------------|------------------|--------------|----------------|----------|----------|----------|-----|----------|-------------------------------------------|----------------------------------------|
|              |                    |                  |            | <u>5 YR ST</u>             | <u>ORM</u>   |                 |             |                  |              |                |          |          |          |     |          |                                           |                                        |
| Present<br>Q | t Condi<br>Q = CIA | tions            |            | . DEVELOPED<br>INAGE AREAS | 6            | Ву              | -           | ow (ARI<br>= CIA | EA 6)        | DRAIN          | AGE AREA | S        |          |     |          |                                           |                                        |
| A =<br>C =   |                    | .49<br>.35       |            | 2                          | A =<br>C =   |                 |             | 0.1              |              |                | 6        |          |          |     |          |                                           |                                        |
| Tc =<br>15 = | :                  | 20<br>.90        |            |                            | Tc =         |                 |             | 10<br>6.1        | 0            |                |          |          |          |     |          |                                           |                                        |
| Q5 =         | 2                  | .56              | cfs        |                            | Q5=          | -               |             | 0.6              | 66           | cfs            |          |          |          |     |          |                                           |                                        |
| Q5 =         | 2                  | .56              | cfs        |                            |              | TOTAL=          |             |                  | 0.           | .66 cfs        |          |          |          |     |          |                                           |                                        |
|              | nditior            |                  |            | Q5 Allowable               |              | 3.76<br>s-Throu |             |                  | AINAGE       | ]              |          |          |          |     |          | Р.                                        |                                        |
|              | 1.7                |                  | AREAS      | S Q = CIA                  | 0.9          |                 | 0.03        | A                | AREAS        | -              |          |          |          |     |          | L.                                        |                                        |
|              | 0.9                | 0                | 3,4,5,9    | <b>C</b> =                 | 0.3          | 35              | 0.90        | 05               | 1, OS-3.3    | -              |          |          |          |     |          | Hotel,                                    | 2<br>2<br>25                           |
|              | 10<br>6.1          | 0                |            | Tc =<br>125 =              | 20<br>4.9    | 90              | 10<br>6.10  |                  |              | -              |          |          |          |     |          | Но                                        | A-12<br>5032<br>-922                   |
|              | 9.3                | 9 cfs            |            | Q25 =                      | 1.6          | 58              | 0.18        | cfs              |              |                |          |          |          |     | Owner:   | SdL                                       |                                        |
|              |                    |                  |            | Flow for Stor              | n Dura       | itions          |             |                  |              |                |          |          |          |     | OW       | t T                                       | $\mathbf{A}_{\mathbf{L}}$ (4)          |
|              |                    |                  | ime<br>10  | 6.10                       | C<br>0.70    |                 | Q<br>1.66   |                  |              |                |          |          |          |     |          | eencrest                                  | )21 Ridge<br>Rockwall,<br>hone: (21    |
|              |                    |                  | 15<br>20   | 5.60<br>4.90               | 0.70<br>0.70 |                 | 0.71<br>.37 |                  |              |                |          |          |          |     |          | enc                                       | 3021 Ri<br>Rockv<br>Phone:             |
|              |                    |                  | 30<br>40   | 4.00 3.40                  | 0.70         | 7               | .65         |                  |              |                |          |          |          |     |          | Gree                                      | 3021<br>Roc<br>Phor                    |
|              |                    |                  | 50         | 2.90                       | 0.70         | 5               | .54         |                  |              |                |          |          |          |     |          | $\bigcirc$                                |                                        |
|              |                    |                  | 60<br>70   | 2.60<br>2.40               | 0.70         | 4               | .97<br>.59  |                  |              |                |          |          |          |     |          |                                           |                                        |
|              |                    |                  | 80<br>90   | 2.20<br>2.10               | 0.70<br>0.70 | 4               | .21<br>.01  |                  |              |                |          |          |          |     |          |                                           |                                        |
|              |                    |                  | 100<br>110 | 1.90<br>1.70               | 0.70<br>0.70 |                 | .63<br>.25  |                  |              |                |          |          |          |     |          |                                           |                                        |
|              |                    |                  | Calau      | lations                    |              |                 |             |                  |              |                |          |          |          |     |          |                                           |                                        |
|              | 5                  |                  |            | llations                   |              |                 |             |                  |              |                |          |          |          |     |          |                                           |                                        |
|              |                    | nflow            | 10 mi      | 6997                       |              | Storage         | =           | 4742             |              |                |          |          |          |     |          | >                                         | 00                                     |
|              | (                  | Dutflov          |            | 2255                       |              |                 |             |                  |              |                |          |          |          |     |          | 101                                       | 9                                      |
|              | I                  | nflow            | 15 mi      | n<br>9635                  |              | Storage         | =           | 6816             |              |                |          |          |          |     |          | $\stackrel{\scriptstyle \sim}{4}T$        | (469) 402<br>F-7449                    |
|              | (                  | Dutflov          | v          | 2819                       |              |                 |             |                  |              |                |          |          |          |     |          | ser -<br>DR                               | 2 • (4                                 |
|              | 1                  | nflow            | 20 mi      | n<br>11241                 |              | Storage         | =           | 7858             |              |                |          |          |          |     |          | <b>D</b>                                  | , Texas 75032 • (·<br>Engineering Firm |
|              |                    | Dutflov          | v          | 3383                       |              | 0               |             |                  |              |                |          |          |          |     |          | Engi<br>COR                               | Texas<br>nginee                        |
|              |                    | nflow            | 30 mi      | n<br>13764                 |              | Storage         |             | 9254             |              |                |          |          |          |     |          | V C                                       | Heath,<br>stered E                     |
|              |                    | Dutflov          | v          | 4510                       |              | Storage         |             | 5254             |              |                |          |          |          |     |          | N Ci                                      | • *Š                                   |
|              |                    | nflow            | 40 mi      | n<br>15599                 |              | C+              |             | 9962             |              |                |          |          |          |     |          | CI                                        | 00 g                                   |
|              |                    | Dutflov          | V          | 5638                       |              | Storage         | _           | 9902             |              |                |          |          |          |     |          | C.                                        | Horiz                                  |
|              | -                  |                  | 50 mi      |                            |              | <b>C</b> .      |             | 2267             |              |                |          |          |          |     |          | F                                         | #                                      |
|              | -                  | nflow<br>Dutflov | v          | 16632<br>6765              |              | Storage         | -           | 9867             |              |                |          |          |          |     |          |                                           | 47 D                                   |
|              | _                  |                  | 60 mi      |                            |              |                 |             |                  |              |                |          |          |          |     |          |                                           |                                        |
|              |                    | nflow<br>Dutflov | v          | 17894<br>7893              |              | Storage         | =           | 10001            |              |                |          |          |          |     |          |                                           |                                        |
|              | _                  |                  | 70 mi      | n                          |              |                 |             |                  |              |                |          |          |          |     |          |                                           |                                        |
|              |                    | nflow<br>Dutflov | v          | 19270<br>9020              |              | Storage         | =           | 10250            |              |                |          |          |          |     |          |                                           |                                        |
|              | _                  |                  | 80 mi      | n                          |              |                 |             |                  |              |                |          |          |          |     |          |                                           |                                        |
|              |                    | nflow<br>Dutflov | v          | 20188<br>10148             |              | Storage         | =           | 10040            |              |                |          |          |          |     | т∩       | WNF                                       | EPLACE                                 |
|              | -                  |                  | 90 mi      |                            |              |                 |             |                  |              |                |          |          |          |     |          |                                           | TES —                                  |
|              |                    | nflow<br>Dutflov |            | 21679<br>11275             | 2            | Storage         | =           | 10403            | Storage      | Required =     |          | 10403 CF |          |     | М        |                                           | ς Ι Ο Τ Τ                              |
|              |                    |                  | v<br>00 mi |                            |              |                 |             |                  |              |                |          |          |          |     |          | 1                                         |                                        |
|              |                    | nflow            |            | 21793                      | :            | Storage         | =           | 9391             |              |                |          |          |          |     | 908      | E. INTE                                   | ERSTATE 30                             |
|              |                    | Dutflov          |            | 12403                      |              |                 |             |                  |              |                |          |          |          |     | RO       | CKWAL                                     | L, TX 75087                            |
|              |                    | nflow            | 10 mi      | 21449                      |              | Storage         | =           | 7919             |              |                |          |          |          |     |          | 1010                                      | 23/2021                                |
|              | (                  | Dutflov          | V          | 13530                      |              |                 |             |                  |              |                |          |          |          |     |          |                                           | OF TELL                                |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     |          | а * ; ; , , , , , , , , , , , , , , , , , | A to                                   |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     |          | CAMERON<br>景: 106                         | 1 A. SLOWN<br>6317 5                   |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     |          | XXXX /CE                                  | ENSE?                                  |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     | /        | 7                                         |                                        |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     | Dra      | wn By:                                    | Checked By:                            |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     |          | CUNY                                      | F.C. CUNY                              |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     |          | 0ate:<br>19/2018                          | Project No.:<br>–                      |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     | She      | et Title:<br>Pon                          | d #2                                   |
|              |                    |                  |            |                            |              |                 |             |                  |              |                |          |          |          |     |          |                                           | lations                                |
|              |                    | 7                | his dro    | wing is propriet           | ary and      | may not         | be coni     | ied or us        | ed in any wo | iy without the | ,        |          | 2018-029 |     |          | cale:                                     | Sheet No.:                             |
|              |                    |                  |            | permission of              |              |                 |             |                  |              |                |          | RECOR    | D DRAW   | ING | N        | .T.S.                                     | 12c of 14                              |

|                           |                  |              |                |                  |                                       |              |   |               |    | Revision | Date                                | Description                                         |
|---------------------------|------------------|--------------|----------------|------------------|---------------------------------------|--------------|---|---------------|----|----------|-------------------------------------|-----------------------------------------------------|
|                           | <u>5</u>         | YR STO       | <u>RM</u>      |                  |                                       |              |   |               |    |          |                                     | ion                                                 |
|                           | PRE. DEV         |              | Ву             | pass Flow (A     | REA 6)                                |              |   |               |    |          |                                     |                                                     |
| 19                        |                  | E AREAS      | A =            | Q = CIA          | ).12                                  | DRAINAG<br>6 |   |               |    |          |                                     |                                                     |
| 35                        |                  |              | C =<br>Tc =    |                  | ).90<br>10                            |              |   |               |    |          |                                     |                                                     |
| 0<br>90<br>56 cf<br>56 cf | c                |              | I5 =<br>Q5=    | (                | 5.10                                  | cfs          |   |               |    |          |                                     |                                                     |
| 56 cf                     |                  |              | Q5 TOTAL=      |                  | 0.66                                  |              |   |               |    |          |                                     |                                                     |
|                           | Q5 A             | lowable =    | 3.76           | cfs              |                                       |              |   |               |    |          | •                                   |                                                     |
|                           | AINAGE<br>REAS C | Offsite      | e Pass-Throu   | gh D             | RAINAGE<br>AREAS                      |              |   |               |    |          | J.P.                                |                                                     |
|                           | 4,5,9 A          | =            | 0.98           |                  | 5-1, OS-3.3                           |              |   |               |    |          | 31, J                               |                                                     |
|                           | Т                | =<br>C =     | 0.35<br>20     | 0.90             |                                       |              |   |               |    |          | lote                                | 120<br>)32<br>)225                                  |
| cfs                       |                  | 25 =<br>25 = | 4.90<br>1.68   | 6.10<br>0.18 cfs |                                       |              |   |               |    | :T:      | SE                                  | - 5 A                                               |
|                           |                  |              |                |                  |                                       |              |   |               |    | Owner:   | $TP_{c}$                            | Roac<br>TX<br>4) 89                                 |
| Tir                       | Flow<br>me       | for Storm    | Durations<br>C | Q                |                                       |              |   |               |    | 0        | eencrest TPS Hotel, L               |                                                     |
|                           |                  | 6.10<br>5.60 |                | 1.66<br>0.71     |                                       |              |   |               |    |          | ICLE                                | 021 Ridge<br>Rockwall,<br>hone: (21                 |
| 2                         | 20               | 4.90<br>4.00 | 0.70           | 9.37<br>7.65     |                                       |              |   |               |    |          | een                                 | 8021 Ri<br>Rock<br>Phone:                           |
| 4                         | 10               | 3.40         | 0.70 6         | 5.50             |                                       |              |   |               |    |          | Gr                                  | <b>(1)</b>                                          |
| 6                         | 60 2             | 2.90<br>2.60 | 0.70 4         | 5.54<br>1.97     |                                       |              |   |               |    |          |                                     |                                                     |
| 8                         | 30               | 2.40<br>2.20 | 0.70 4         | 4.59<br>4.21     |                                       |              |   |               |    |          |                                     |                                                     |
|                           |                  | 2.10<br>1.90 |                | 4.01<br>3.63     |                                       |              |   |               |    |          |                                     |                                                     |
|                           |                  | 1.70         |                | 3.25             |                                       |              |   |               |    |          |                                     |                                                     |
| orage (                   | Calculatio       | ns           |                |                  | ]                                     |              |   |               |    |          |                                     |                                                     |
| 1                         | ) min            |              |                |                  |                                       |              |   |               |    |          |                                     |                                                     |
| flow<br>utflow            | 69<br>22         |              | Storage        | = 4742           |                                       |              |   |               |    |          | Ń                                   | 7700                                                |
|                           | 5 min            |              |                |                  | -                                     |              |   |               |    |          | $OI_{-}$                            |                                                     |
| flow<br>utflow            | 96 28            |              | Storage        | = 6816           |                                       |              |   |               |    |          | l Engineer ∼<br><i>CORPORA TION</i> | Texas 75032 • (469) 402-<br>Engineering Firm F–7449 |
|                           |                  | 19           |                |                  | _                                     |              |   |               |    |          | Civil Engineer<br>NY CORPOR         | 32 • (<br>Firm                                      |
| flow                      | 0 min<br>112     |              | Storage        | = 7858           |                                       |              |   |               |    |          | gin<br>RP                           | s 750<br>eering                                     |
| utflow                    | 33               | 83           |                |                  | _                                     |              |   |               |    |          | En                                  | Texa:<br>Engine                                     |
| 30<br>flow                | 0 min<br>137     | 64           | Storage        | = 9254           | -                                     |              |   |               |    |          | ivil<br>Y                           | Horizon Court - Heath,<br>Texas Registered I        |
| utflow                    | 45               | 10           |                |                  | -                                     |              |   |               |    |          | ~ Civi                              | urt • H<br>Regisi                                   |
| 40<br>flow                | 0 min<br>155     | 99           | Storage        | = 9962           |                                       |              |   |               |    |          | C C                                 | on Co<br>Texas                                      |
| utflow                    | 56               |              |                |                  | -                                     |              |   |               |    |          | C.                                  | Horiz                                               |
| 50<br>flow                | 0 min<br>166     | 32           | Storage        | = 9867           | -                                     |              |   |               |    |          | F.                                  | #                                                   |
| utflow                    | 67               |              | btoruge        |                  | -                                     |              |   |               |    |          |                                     |                                                     |
|                           | 0 min            | 0.4          | <u></u>        | 10001            | -                                     |              |   |               |    |          |                                     |                                                     |
| flow<br>utflow            | 178<br>78        |              | Storage        | = 10001          | -                                     |              |   |               |    |          |                                     |                                                     |
| 70                        | 0 min            |              |                |                  | _                                     |              |   |               |    |          |                                     |                                                     |
| flow<br>utflow            | 192<br>90        |              | Storage        | = 10250          | -                                     |              |   |               |    |          |                                     |                                                     |
| 80                        | ) min            |              |                |                  | _                                     |              |   |               |    |          |                                     |                                                     |
| flow<br>utflow            | 201<br>101       |              | Storage        | = 10040          | -                                     |              |   |               |    | Τ∩       | <b>W/N</b> F                        | EPLACE                                              |
|                           | 0 min            |              |                |                  | -                                     |              |   |               |    | . •      |                                     | TES —                                               |
| flow<br>utflow            | 216              |              | Storage        | = 10403          | Storage Re                            | quired =     |   | 10403 CF      |    | М        |                                     | RIOTT                                               |
|                           |                  | ,            |                |                  | -                                     |              |   |               |    |          | × 1 × 1 `                           |                                                     |
| flow                      | 0 min<br>217     |              | Storage        | = 9391           | -                                     |              |   |               |    | 908      | E. INTE                             | RSTATE 30                                           |
| utflow                    | 124              | 03           |                |                  | _                                     |              |   |               |    |          |                                     | L, TX 75087                                         |
| flow                      | 0 min<br>214     |              | Storage        | = 7919           |                                       |              |   |               |    |          | 1010                                | 312021                                              |
| utflow                    | 135              | 30           |                |                  |                                       |              |   |               |    |          |                                     | 3/2021                                              |
|                           |                  |              |                |                  |                                       |              |   |               |    |          | STATE.                              | , et as                                             |
|                           |                  |              |                |                  |                                       |              |   |               |    | i        | CAMERON<br>兄、106                    |                                                     |
|                           |                  |              |                |                  |                                       |              |   |               |    |          | OK /CE                              | NSED                                                |
|                           |                  |              |                |                  |                                       |              |   |               |    | /        | 7                                   | there are a second                                  |
|                           |                  |              |                |                  |                                       |              |   |               |    | (        | 2                                   |                                                     |
|                           |                  |              |                |                  |                                       |              |   |               |    |          | iwn By:<br>. CUNY                   | Checked By:<br>F.C. CUNY                            |
|                           |                  |              |                |                  |                                       |              |   |               |    |          | Date:<br>19/2018                    | Project No.:<br>–                                   |
|                           |                  |              |                |                  |                                       |              |   |               |    | -        | ret Title:<br>Pon                   | d #?                                                |
|                           |                  |              |                |                  |                                       |              |   |               |    |          |                                     | lations                                             |
|                           |                  |              |                |                  |                                       |              |   | SP 2018-029   |    |          | Scale:                              | Sheet No.:                                          |
|                           |                  |              |                |                  | used in any way w<br>ht — FC Cuny Coi |              | F | RECORD DRAWIN | IG | ٨        | I.T.S.                              | 12c of 14                                           |
|                           |                  |              |                |                  |                                       |              |   |               |    |          |                                     |                                                     |

|                   |                                           |                                               |                         |                        | Revision Date                 | Description                                                 |
|-------------------|-------------------------------------------|-----------------------------------------------|-------------------------|------------------------|-------------------------------|-------------------------------------------------------------|
|                   | <u>5 YR STO</u>                           | <u>DRM</u>                                    |                         |                        |                               |                                                             |
| Conditions        | PRE. DEVELOPED                            | Bypas                                         | s Flow (AREA 6)         |                        |                               |                                                             |
| CIA 1.49          | DRAINAGE AREAS                            | A =                                           | Q = CIA<br>0.12         | DRAINAGE AREAS<br>6    |                               |                                                             |
| 0.35<br>20        |                                           | C =<br>Tc =                                   | 0.90<br>10              |                        |                               |                                                             |
| 4.90              |                                           | 15 =                                          | 6.10                    |                        |                               |                                                             |
|                   | fs<br>fs                                  | Q5=<br>Q5 TOTAL=                              | 0.66                    | Cfs 0.66 cfs           |                               |                                                             |
|                   | Q5 Allowable                              | = 3.76 cfs                                    |                         |                        |                               |                                                             |
| ditions DR.       |                                           | te Pass-Through                               | DRAINAGE                |                        | .P.                           |                                                             |
|                   | AREAS Q = CIA<br>8,4,5,9 A =              | 0.98 0.0                                      | AREAS<br>3 OS-1, OS-3.3 |                        | ľ, Ľ                          |                                                             |
| 0.90<br>10        | C =<br>Tc =                               | 0.35 0.9<br>20 10                             |                         |                        | ote.                          | 20<br>25<br>25                                              |
| 6.10<br>9.39 cfs  | 125 =                                     | 4.90 6.1<br>1.68 0.1                          | 0                       |                        | H                             | A-120<br>5032<br>)-9225                                     |
| 5.55 CIS          | Q25 -                                     | 1.08 0.1                                      |                         |                        | Owner:<br>eencrest TPS Hotel, | Ridge Road, A-120<br>ckwall, TX 75032<br>ne: (214) 890-9225 |
|                   | Flow for Storn                            |                                               |                         |                        | Ои<br>It T                    | e R(<br>11, T<br>214)                                       |
|                   | ime I<br>10 6.10                          | C Q<br>0.70 11.66                             | 5                       |                        | res                           | 21 Ridge<br>Rockwall,<br>hone: (21                          |
|                   | 15         5.60           20         4.90 | 0.70 10.71<br>0.70 9.37                       |                         |                        | enc                           | 3021 Rid<br>Rockv<br>Phone:                                 |
|                   | 30 4.00                                   | 0.70 7.65                                     |                         |                        | Jree                          | 3021<br>Roc<br>Phon                                         |
|                   | 40         3.40           50         2.90 | 0.70 6.50<br>0.70 5.54                        |                         |                        | 0                             |                                                             |
|                   | 60         2.60           70         2.40 | 0.70 4.97<br>0.70 4.59                        |                         |                        |                               |                                                             |
|                   | 80 2.20<br>90 2.10                        | 0.70         4.21           0.70         4.01 |                         |                        |                               |                                                             |
| 1                 | 100 1.90                                  | 0.70 3.63                                     |                         |                        |                               |                                                             |
| 1                 | 110 1.70                                  | 0.70 3.25                                     |                         |                        |                               |                                                             |
| Storage           | Calculations                              |                                               |                         |                        |                               |                                                             |
|                   | l0 min                                    |                                               |                         |                        |                               |                                                             |
| Inflow<br>Outflow | 6997<br>2255                              | Storage =                                     | 4742                    |                        |                               | -7700                                                       |
| 1                 | L5 min                                    |                                               |                         |                        |                               | 402-402-                                                    |
| Inflow<br>Outflow | 9635                                      | Storage =                                     | 6816                    |                        | ~ ~                           | L 1<br>(469)<br>F-7                                         |
|                   |                                           |                                               |                         |                        | Engineer                      | 32 • (<br>Firm                                              |
| Inflow            | 20 min<br>11241                           | Storage =                                     | 7858                    |                        | gin<br>R D                    | 5 75032<br>Sering Fi                                        |
| Outflow           | 3383                                      |                                               |                         |                        | En                            | Locas 750<br>Engineering                                    |
| 3<br>Inflow       | 30 min<br>13764                           | Storage =                                     | 9254                    |                        | Civil                         |                                                             |
| Outflow           |                                           |                                               |                         |                        | Ci Ci                         | N⊥ ↓<br>Irt • H<br>Regist                                   |
|                   | 10 min                                    |                                               |                         |                        |                               | on Court • Heath,<br>Texas Registered                       |
| Inflow<br>Outflow | 15599<br>5638                             | Storage =                                     | 9962                    |                        | ر                             | Horizon<br>Tex                                              |
| 5                 | 50 min                                    |                                               |                         |                        | Ľ                             | #                                                           |
| Inflow<br>Outflow | 16632<br>6765                             | Storage =                                     | 9867                    |                        |                               |                                                             |
|                   | 50 min                                    |                                               |                         |                        |                               |                                                             |
| Inflow            | 17894                                     | Storage =                                     | 10001                   |                        |                               |                                                             |
| Outflow           |                                           |                                               |                         |                        |                               |                                                             |
| 7<br>Inflow       | 70 min<br>19270                           | Storage =                                     | 10250                   |                        |                               |                                                             |
| Outflow           | 9020                                      |                                               |                         |                        |                               |                                                             |
|                   | 30 min                                    | Chammer                                       | 10040                   |                        |                               |                                                             |
| Inflow<br>Outflow | 20188<br>10148                            | Storage =                                     | 10040                   |                        | TOWN                          | EPLACE                                                      |
|                   | 90 min                                    |                                               |                         |                        | ⊢S∪                           | ITES —                                                      |
| Inflow<br>Outflow | 21679<br>11275                            | Storage =                                     | 10403 Stora             | ge Required = 10403 CF |                               | RIOTT                                                       |
|                   | 00 min                                    |                                               |                         |                        |                               |                                                             |
| Inflow<br>Outflow | 21793                                     | Storage =                                     | 9391                    |                        | 908 E. INT                    | ERSTATE 30                                                  |
|                   |                                           |                                               |                         |                        | ROCKWA                        | LL, TX 75087                                                |
| Inflow            | 10 min<br>21449                           | Storage =                                     | 7919                    |                        |                               | 12212021                                                    |
| Outflow           | 13530                                     |                                               |                         |                        |                               | 23/2021                                                     |
|                   |                                           |                                               |                         |                        | S.A.T.E.                      | A LELAS                                                     |
|                   |                                           |                                               |                         |                        |                               | DN A. SLOWN                                                 |
|                   |                                           |                                               |                         |                        |                               | CENSE                                                       |
|                   |                                           |                                               |                         |                        |                               | WAL FITTE                                                   |
|                   |                                           |                                               |                         |                        | Ca                            | - X/-                                                       |
|                   |                                           |                                               |                         |                        | Drawn By:                     | Checked By:                                                 |
|                   |                                           |                                               |                         |                        | F.C. CUNY<br>Date:            | F.C. CUNY<br>Project No.:                                   |
|                   |                                           |                                               |                         |                        | 11/19/2018                    | -                                                           |
|                   |                                           |                                               |                         |                        | Sheet Title:                  |                                                             |
|                   |                                           |                                               |                         | ED 0040 000            |                               | ulations                                                    |
|                   |                                           |                                               | copied or used in any   |                        | Scale:<br>N. T. S.            | Sheet No.:<br>12c of 14                                     |
|                   |                                           |                                               | – © Copyright – FC Cu   |                        | 11.1.3.                       |                                                             |

## <u>100 YR STORM</u>

# <u>25 YR STORM</u>

| 6.15<br>1.02<br>1.36<br>48.91<br>17852<br>Non<br>*H)^0.5)<br>0.39                               | <= USEF                                                                                                                                                                                |                                                                                                                                                                     | <u>100YR WSEL</u><br>534.53+89.85/12 = 542.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 365.00<br>RADIUS)<br>89.85<br>6.15<br>1.02<br>1.36<br>48.91<br>17852<br>ION<br>*H)^0.5)<br>0.39 | <= USEF                                                                                                                                                                                | R INPUT                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RADIUS)<br>89.85<br>6.15<br>1.02<br>1.36<br>48.91<br>17852<br>ION<br>*H)^0.5)<br>0.39           | <= USEF                                                                                                                                                                                | R INPUT                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 89.85<br>6.15<br>1.02<br>1.36<br>48.91<br>17852<br>17852<br>NON<br>*H)^0.5)<br>0.39             |                                                                                                                                                                                        | R INPUT                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.15<br>1.02<br>1.36<br>48.91<br>17852<br>Non<br>*H)^0.5)<br>0.39                               |                                                                                                                                                                                        |                                                                                                                                                                     | <u>534.53+89.85/12 = 542.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.02<br>1.36<br>48.91<br>17852<br>ION<br>*H)^0.5)<br>0.39                                       |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.36<br>48.91<br>17852<br>ION<br>*H)^0.5)<br>0.39                                               |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 48.91<br>17852<br>ION<br>*H)^0.5)<br>0.39                                                       |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17852<br>ION<br>*H)^0.5)<br>0.39                                                                |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I <b>ON</b><br>*H)^0.5)<br>0.39                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *H)^0.5)<br>0.39                                                                                |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *H)^0.5)<br>0.39                                                                                |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *H)^0.5)<br>0.39                                                                                |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.39                                                                                            |                                                                                                                                                                                        | FL= 6.                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                 | ft³/sec                                                                                                                                                                                |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.62                                                                                            |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.00                                                                                            |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ION                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        | FI = 2                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                 | ft³/sec                                                                                                                                                                                |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 | ft/sec <sup>2</sup>                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *U\\0 5\                                                                                        |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 | ft3/coc                                                                                                                                                                                | FL= 0                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 | 0.62<br>32.20<br>0.82<br>0.09<br>4.00<br>2.00<br>*H)^0.5)<br>0.86<br>0.62<br>32.20<br>4.83<br>0.08<br>3.80<br>1.90<br>*H)^0.5)<br>4.88<br>0.62<br>3.20<br>4.83<br>0.08<br>3.80<br>1.90 | 0.62<br>32.20 ft/sec²<br>0.82 ft<br>0.09 ft²<br>4.00 in<br>2.00 in<br>2.00 ft²<br>4.00 in<br>2.00 ft²<br>32.20 ft/sec²<br>4.83 ft<br>0.08 ft²<br>3.80 in<br>1.90 in | 0.62       ft/sec²       1         32.20       ft/sec²       1         0.82       ft       1         0.09       ft²       1         4.00       in       1         2.00       in       1         2.00       in       1         *H)^0.5)       FL=       2         0.62       1       1         32.20       ft/sec²       1         0.62       1       1         32.20       ft/sec²       1         32.20       ft/sec²       1         1.90       in       1         1.90       in       1         1.90       in       1         4.83       ft²       1         3.80       in       1         1.90       in       1         4.83       ft²       1         4.83       ft³/sec       1         6.62       1       1         7.24       ft       1         0.36       ft²       1         7.24       ft       1         0.36       ft²       1         8.75       in       1 |

| 25 YEAR 96" PIPE STORAGE CALCUL            | ATION        |                     |    |
|--------------------------------------------|--------------|---------------------|----|
| PIPE DIAMETER (in.)                        | 96.00        |                     |    |
| AREA OF PIPE (SF)                          | 50.27        |                     |    |
| LENGTH OF PIPE (FT)                        | 365.00       |                     |    |
| PIPE AREA ITERATIONS (GIVEN d> RA          | ADIUS)       |                     |    |
| INPUT d (in)                               | <u>69.98</u> | <= USER             | IN |
| h = 2R-d                                   | 26.02        |                     |    |
| $\phi = 2 \arccos((r-h)/r)$                | 2.19         |                     |    |
| $K = (r^2(\emptyset - \sin(\emptyset)))/2$ | 11.01        |                     |    |
| A = ∏r^2 - K                               | 39.26        |                     |    |
| PROVIDED VOLUME (96 in. PIPE)              | 14329        |                     |    |
|                                            |              |                     |    |
|                                            |              |                     |    |
|                                            |              |                     |    |
|                                            |              |                     |    |
| CIRCLE                                     |              |                     |    |
| ORIFICE CALCULATION                        |              |                     |    |
| Equation: $Q = Cd^*A^*((2^*g^*H)^{0.5})$   |              |                     |    |
| Q =                                        | 0.70         | ft³/sec             |    |
| Cd =                                       | 0.62         |                     |    |
| g =                                        | 32.20        | ft/sec <sup>2</sup> |    |
| H =                                        | 3.17         | ft                  |    |
| A = PI*R^2                                 | 0.08         | ft²                 |    |
| D =                                        | 3.80         | in                  |    |
| R =                                        | 1.90         | in                  |    |
|                                            |              |                     |    |
|                                            |              |                     |    |
| RECTANGULAR                                |              |                     |    |
| ORIFICE CALCULATION                        |              |                     |    |
| Equation: Q = Cd*A*((2*g*H                 | )^0.5)       |                     |    |
| Q =                                        | 4.29         | ft³/sec             |    |
| Cd =                                       | 0.62         |                     |    |
| g =                                        | 32.20        | ft/sec <sup>2</sup> |    |
| H =                                        | 5.58         | ft                  |    |
| A = BH                                     | 0.36         | ft²                 |    |
| B =                                        | 8.75         | in                  |    |
| H=                                         | 6.00         | in                  |    |

<u> 25YR Qallowable = 5.23</u>

<u> 100YR Qallowable = 6.41 cfs</u>

<u>Q total = 4.88+0.86+0.39 = 6.13 cfs</u>

## <u>10 YR STORM</u>

<u>10YR WSEL</u>

<u>534.53+58.00/12 = 539.36</u>

|                |       |     | <u>25YR WSEL</u>                      |
|----------------|-------|-----|---------------------------------------|
|                | INPUT |     |                                       |
| SER            | INPUT |     | <u>534.53+69.98/12 = 540.36</u>       |
|                |       |     | · · · · · · · · · · · · · · · · · · · |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       | 2 5 |                                       |
| 0              | FL=   | 2.5 |                                       |
| eC             |       |     |                                       |
|                |       |     |                                       |
| C <sup>2</sup> |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                | FL=   | 0   |                                       |
| C              |       |     |                                       |
| -              |       |     |                                       |
| C <sup>2</sup> |       |     |                                       |
| J-             |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |
|                |       |     |                                       |

| 10 YEAR 96" PIPE STORAGE CALC              | JLATION  |                     |       |     |
|--------------------------------------------|----------|---------------------|-------|-----|
| PIPE DIAMETER (in.)                        | 96.00    |                     |       |     |
| AREA OF PIPE (SF)                          | 50.27    |                     |       |     |
| LENGTH OF PIPE (FT)                        | 365.00   |                     |       |     |
| PIPE AREA ITERATIONS (GIVEN d>             | RADIUS)  |                     |       |     |
| INPUT d (in)                               | 58.00    | <= USER             | INPUT |     |
| h = 2R-d                                   | 38.00    |                     |       |     |
| $\phi = 2 \operatorname{arccos}((r-h)/r)$  | 2.72     |                     |       |     |
| $K = (r^2(\emptyset - \sin(\emptyset)))/2$ | 18.51    |                     |       |     |
| A = ∏r^2 - К                               | 31.75    |                     |       |     |
| PROVIDED VOLUME (96 in. PIPE)              | 11589    |                     |       |     |
|                                            |          |                     |       |     |
|                                            |          |                     |       |     |
|                                            |          |                     |       |     |
|                                            |          |                     |       |     |
|                                            |          |                     |       |     |
| CIRCLE                                     |          |                     |       |     |
| ORIFICE CALCULAT                           | ION      |                     |       |     |
| Equation: Q = Cd*A*((2*g                   | *H)^0.5) |                     | FL=   | 2.5 |
| Q =                                        | 0.58     | ft³/sec             |       |     |
| Cd =                                       | 0.62     |                     |       |     |
| g =                                        | 32.20    | ft/sec <sup>2</sup> |       |     |
| H =                                        | 2.18     | ft                  |       |     |
| $A = PI^*R^2$                              | 0.08     | ft²                 |       |     |
| D =                                        | 3.80     | in                  |       |     |
| R =                                        | 1.90     | in                  |       |     |
|                                            |          |                     |       |     |
|                                            |          |                     |       |     |
|                                            |          |                     |       |     |
|                                            | *11\^    |                     |       | 0   |
| Equation: Q = Cd*A*((2*g                   |          | ft³/sec             | FL=   | U   |
| Q =                                        |          |                     |       |     |
| Cd =                                       | 0.62     |                     |       |     |
| g =                                        |          | ft/sec <sup>2</sup> |       |     |
|                                            | 4.58     |                     |       |     |
| A = BH                                     | 0.36     |                     |       |     |
| B =                                        | 8.75     |                     |       |     |
| H=                                         | 6.00     | IN                  |       |     |

| 3 | <u>cfs</u> |  |
|---|------------|--|

<u>Qtotal = 4.29 + 0.70 = 4.99 cfs</u>

<u> 10YR Qallowable = 4.54 cfs</u>

<u>Qtotal = 3.88 + 0.58 = 4.46 cfs</u>

| <u>5</u>                                   | YR STORM                                  |                     |     |   |                          |
|--------------------------------------------|-------------------------------------------|---------------------|-----|---|--------------------------|
| 5 YEAR 96" PIPE STORAGE CALC               |                                           | 1                   |     |   |                          |
| PIPE DIAMETER (in.)                        | 96.00                                     |                     |     |   |                          |
| REA OF PIPE (SF)                           | 50.27                                     |                     |     |   |                          |
| ENGTH OF PIPE (FT)                         | 365.00                                    |                     |     |   | <u>5YR WSEL</u>          |
| PIPE AREA ITERATIONS (GIVEN d              |                                           |                     |     |   | 534.53+53.07/12 = 538.95 |
| NPUT d (in)                                |                                           | <= USEF             |     |   | 001.00100.0772 000.00    |
| = 2R-d                                     | 42.93                                     |                     |     |   | _                        |
| ) = 2arccos((r-h)/r)                       | 2.93                                      |                     |     |   |                          |
| $x = (r^2(\emptyset - \sin(\emptyset)))/2$ | 21.76                                     |                     |     |   |                          |
| v = ∏r^2 - K                               | 28.51                                     |                     |     |   |                          |
| ROVIDED VOLUME (96 in. PIPE)               | 10405                                     |                     |     |   |                          |
|                                            |                                           |                     |     |   |                          |
|                                            |                                           |                     |     |   | _                        |
|                                            |                                           |                     |     |   | _                        |
|                                            |                                           |                     |     |   | _                        |
|                                            |                                           |                     |     |   |                          |
| RECTANGULA                                 |                                           |                     |     |   | _                        |
| ORIFICE CALCULA                            |                                           |                     |     |   |                          |
| Equation: Q = Cd*A*((2                     |                                           |                     | FL= | 0 | _                        |
| Q =                                        |                                           | ft³/sec             |     | - | _                        |
| 2d =                                       | 0.62                                      | 1                   |     |   | _                        |
| =                                          |                                           | ft/sec <sup>2</sup> |     |   | _                        |
| =                                          | 4.17                                      |                     |     |   | _                        |
| х = BH                                     | 0.36                                      |                     |     |   | _                        |
| 3 =                                        | 8.75                                      |                     |     |   | _                        |
| I=                                         | 6.00                                      |                     |     |   | _                        |
|                                            | <u>wable = 3.7</u><br><u>I = 3.71 cfs</u> |                     |     |   |                          |
|                                            |                                           |                     |     |   |                          |

Р. L. TPS Hotel, ld, A-120 (75032 (90-9225 Owner: 3021 Ridge Road Rockwall, TX Phone: (214) 89 Greencrest TION (1402-7700 Civil Engineer ~ JNY CORPOR/ Int - Heath, Texas 75032 - (46 Ĵ, C. C Horizon C Texas 1 |**2** TOWNEPLACE MARRIOTT 908 E. INTERSTATE 30 ROCKWALL, TX 75087 | 2/23/202 |  $\mathbf{X}$ CAMERON A. SLOW in Drawn By: Checked By: F.C. CUNY F.C. CUNY Date: 11/19/2018 Project No.: -Sheet Title: Pond #2 Calculations Sheet No.: Scale:

12d of 14

N. T. S.

Revision Date

Description

SP 2018-029 **RECORD DRAWING** 

## <u>100 YR STORM</u>

| Present   |            | t Conditions   | PRE. DEVELOPED |            |          |
|-----------|------------|----------------|----------------|------------|----------|
|           | C          | Q = CIA        | = CIA DRAINAGE |            |          |
|           | A =        | 2.08           | 09             | 5-2.1      |          |
|           | <b>C</b> = | 0.35           |                |            |          |
|           | Tc =       | 20             |                |            |          |
|           | 1100 =     | 8.30           |                |            |          |
|           | Q100 =     | 6.04           | cfs            |            |          |
|           | Q100 =     | 6.04           | cfs            |            |          |
|           | Q10        | 00 Allowable = | = 6.           | 04 cfs     |          |
| Future Co | nditions   | DRAINAGE       | Future         | Conditions | DRAINAGE |
| Q = CIA   |            | AREAS          | Q = CIA        |            | AREAS    |
| A =       | 2.00       | OS-3, OS-3.2   | 2 A =          | 0.36       | OS-3.1   |
| C =       | 0.35       |                | C =            | 0.90       |          |
| Tc =      | 20         |                | Tc =           | 10         |          |
| 1100 =    | 8.30       |                | 1100 =         | 9.80       |          |
| Q100 =    | 5.81       | cfs            | Q100 =         | 3.18       | cfs      |

|      | Flow for Storm Durations |      |       |  |  |  |  |
|------|--------------------------|------|-------|--|--|--|--|
| Time | I                        | Cw   | Q     |  |  |  |  |
| 10   | 9.80                     | 0.43 | 10.04 |  |  |  |  |
| 15   | 9.00                     | 0.43 | 9.22  |  |  |  |  |
| 20   | 8.30                     | 0.43 | 8.50  |  |  |  |  |
| 30   | 6.90                     | 0.43 | 7.07  |  |  |  |  |
| 40   | 5.80                     | 0.43 | 5.94  |  |  |  |  |
| 50   | 5.00                     | 0.43 | 5.12  |  |  |  |  |
| 60   | 4.50                     | 0.43 | 4.61  |  |  |  |  |
| 70   | 4.00                     | 0.43 | 4.10  |  |  |  |  |
| 80   | 3.70                     | 0.43 | 3.79  |  |  |  |  |
| 90   | 3.50                     | 0.43 | 3.58  |  |  |  |  |
| 100  | 3.40                     | 0.43 | 3.48  |  |  |  |  |
| 110  | 3.20                     | 0.43 | 3.28  |  |  |  |  |

| Storage Ca        | alculations    |             |      |
|-------------------|----------------|-------------|------|
| 10                | min            |             |      |
| Inflow            | 6021           | Storage =   | 2396 |
| Outflow           | 3625           | Storuge -   | 2350 |
| outilon           |                |             |      |
| 15                | min            |             |      |
| Inflow            | 8294           | Storage =   | 3763 |
| Outflow           | 4532           |             |      |
| 20                | min            |             |      |
| 20<br>Inflow      | 10199          | Storago -   | 4761 |
| Outflow           | 5438           | Storage =   | 4701 |
| outhow            | 5456           |             |      |
| 30                | min            |             |      |
| Inflow            | 12718          | Storage =   | 5467 |
| Outflow           | 7251           |             |      |
| 10                |                |             |      |
| 40<br>Inflow      | min<br>14254   | Storago -   | 5190 |
| Outflow           | 9064           | Storage =   | 5190 |
| Outilow           | 5004           |             |      |
| 50                | min            |             |      |
| Inflow            | 15360          | Storage =   | 4484 |
| Outflow           | 10876          |             |      |
| 60                |                |             |      |
|                   | min            | Chave and a | 2000 |
| Inflow<br>Outflow | 16589<br>12689 | Storage =   | 3900 |
| Outilow           | 12009          |             |      |
| 70                | min            |             |      |
| Inflow            | 17203          | Storage =   | 2701 |
| Outflow           | 14502          |             |      |
|                   | ~              |             |      |
|                   | min            |             |      |
| Inflow            | 18186          | Storage =   | 1872 |
| Outflow           | 16314          |             |      |
| 90                | min            |             |      |
| Inflow            | 19354          | Storage =   | 1226 |
| Outflow           | 18127          |             |      |
|                   |                |             |      |
|                   | min            |             |      |
| Inflow            | 20890          | Storage =   | 950  |
| Outflow           | 19940          |             |      |
| 110               | min            |             |      |
| Inflow            | 21627          | Storage =   | -126 |
| Outflow           | 21753          |             | 120  |

## 100 YR WSEL 550.99

| Weir Equation           |      |     |  |  |  |  |
|-------------------------|------|-----|--|--|--|--|
| $Q = Cd * L* H^{(3/2)}$ |      |     |  |  |  |  |
| Q =                     | 5.56 | cfs |  |  |  |  |
| Cd =                    | 3.37 |     |  |  |  |  |
| L =                     | 0.42 | ft  |  |  |  |  |
| Solving for H =         | 2.49 | ft  |  |  |  |  |

# <u>25 YR STORM</u>

| Present C | onditions | PRE. DEVELOPED |  |  |  |
|-----------|-----------|----------------|--|--|--|
| Q =       | CIA       | DRAINAGE AREAS |  |  |  |
| A =       | 2.08      | OS-2.1         |  |  |  |
| C =       | 0.35      |                |  |  |  |
| Tc =      | 20        |                |  |  |  |
| 125 =     | 6.80      |                |  |  |  |
| Q25 =     | 4.95      | cfs            |  |  |  |
| Q25 =     | 4.95      | cfs            |  |  |  |
|           |           |                |  |  |  |

## Q25 Allowable = 4.95 cfs

2129

3107

3900

4125

3377

2507

2312

1871

632

-362

-1601

4197 Storage Required = 4197 CF

| Future Conditions |      | DRAINAGE            | Future C   | Future Conditions |                  |
|-------------------|------|---------------------|------------|-------------------|------------------|
| Q = CIA           |      | AREAS               | Q = CIA    |                   | AREAS            |
| A =               | 2.00 | OS-3, OS-3.2        | A =        | 0.36              | OS-3.1           |
| C =               | 0.35 |                     | <b>C</b> = | 0.90              |                  |
| Tc =              | 20   |                     | Tc =       | 10                |                  |
| 25 =              | 6.80 |                     | 125 =      | 8.30              |                  |
| Q25 =             | 4.76 | cfs                 | Q25 =      | 2.69              | <mark>cfs</mark> |
|                   |      | Flow for Sto        | rm Duratio | ns                | ]                |
|                   | Time | 1                   | С          | Q                 |                  |
|                   | 10   | 8.30                | 0.43       | 8.50              |                  |
|                   | 15   | 7.40                | 0.43       | 7.58              |                  |
|                   | 20   | 6.80                | 0.43       | 6.96              |                  |
|                   | 30   | 5.50                | 0.43       | 5.63              |                  |
|                   | 40   | 4.70                | 0.43       | 4.81              |                  |
|                   | 50   | 4.00                | 0.43       | 4.10              |                  |
|                   | 60   | 3.50                | 0.43       | 3.58              |                  |
|                   | 70   | 3.30                | 0.43       | 3.38              |                  |
|                   | 80   | 3. <mark>1</mark> 0 | 0.43       | 3.17              |                  |
|                   | 90   | 2.80                | 0.43       | 2.87              |                  |
|                   | 100  | 2.60                | 0.43       | 2.66              |                  |
|                   | 110  | 2.40                | 0.43       | 2.46              |                  |

| Storage Ca | alculations |           |
|------------|-------------|-----------|
|            |             |           |
| 10         | min         |           |
| Inflow     | 5100        | Storage = |
| Outflow    | 2970        | Storage - |
| Outriow    | 2970        |           |
| 15         | min         |           |
| Inflow     | 6820        | Storage = |
| Outflow    | 3713        |           |
|            |             |           |
|            | min         |           |
| Inflow     | 8356        | Storage = |
| Outflow    | 4455        |           |
| 30         | min         |           |
| Inflow     | 10138       | Storage = |
| Outflow    | 5940        |           |
|            |             |           |
| 40         | min         |           |
| Inflow     | 11551       | Storage = |
| Outflow    | 7426        |           |
| 50         |             |           |
|            | min         |           |
| Inflow     | 12288       | Storage = |
| Outflow    | 8911        |           |
| 60         | min         |           |
| Inflow     | 12902       | Storage = |
| Outflow    | 10396       | otoruge   |
|            |             |           |
| 70         | min         |           |
| Inflow     | 14193       | Storage = |
| Outflow    | 11881       |           |
|            |             |           |
|            | min         |           |
| Inflow     | 15237       | Storage = |
| Outflow    | 13366       |           |
| ٩O         | min         |           |
| Inflow     | 15483       | Storage = |
| Outflow    | 134851      | Storage = |
| Satiow     | 1-001       |           |
| 100        | min         |           |
| Inflow     | 15974       | Storage = |
| Outflow    | 16336       |           |
|            |             |           |
| 110        | min         |           |
| Inflow     | 16220       | Storage = |
| Outflow    | 17821       |           |

| 25 YR WSEL      | 550. | 64  |
|-----------------|------|-----|
| Weir Equation   |      |     |
| Q = Cd*L*H^(3/2 | 2)   |     |
| Q =             | 4.43 | cfs |
| Cd =            | 3.37 |     |
| L =             | 0.42 | ft  |
| H =             | 2.14 | ft  |

## Storage Required = 5467 CF

# <u>10 YR STORM</u>

| Present    | PRE. DEVELOPED |                |  |  |
|------------|----------------|----------------|--|--|
| Q          | = CIA          | DRAINAGE AREAS |  |  |
| A =        | 2.08           | OS-2.1         |  |  |
| C =        | 0.35           |                |  |  |
| Tc =       | 20             |                |  |  |
| 110 =      | 5.90           |                |  |  |
| Q10 =      | 4.30           | cfs            |  |  |
| Q10 = 4.30 |                | cfs            |  |  |

## Q10 Allowable = 4.30 cfs

| Future Conditions |      | DRAINAGE     | Offsite Pass-Through |      |        |
|-------------------|------|--------------|----------------------|------|--------|
| Q = CIA           |      | AREAS        | Q = CIA              |      |        |
| 4 =               | 2.00 | OS-3, OS-3.2 | A =                  | 0.36 | OS-3.1 |
| C =               | 0.35 |              | C =                  | 0.90 |        |
| Гc=               | 20   |              | Tc =                 | 10   |        |
| 10 =              | 5.90 |              | 125 =                | 7.10 |        |
| Q10 =             | 4.13 | cfs          | Q25 =                | 2.30 | cfs    |

| Flow for Storm Durations |      |      |      |  |  |  |  |
|--------------------------|------|------|------|--|--|--|--|
| Time                     | 1    | С    | Q    |  |  |  |  |
| 10                       | 7.10 | 0.43 | 7.27 |  |  |  |  |
| 15                       | 6.50 | 0.43 | 6.66 |  |  |  |  |
| 20                       | 5.90 | 0.43 | 6.04 |  |  |  |  |
| 30                       | 4.90 | 0.43 | 5.02 |  |  |  |  |
| 40                       | 4.00 | 0.43 | 4.10 |  |  |  |  |
| 50                       | 3.40 | 0.43 | 3.48 |  |  |  |  |
| 60                       | 3.00 | 0.43 | 3.07 |  |  |  |  |
| 70                       | 2.80 | 0.43 | 2.87 |  |  |  |  |
| 80                       | 2.60 | 0.43 | 2.66 |  |  |  |  |
| 90                       | 2.40 | 0.43 | 2.46 |  |  |  |  |
| 100                      | 2.20 | 0.43 | 2.25 |  |  |  |  |
| 110                      | 2.00 | 0.43 | 2.05 |  |  |  |  |

| Storage Ca        | alculations    |           |       |
|-------------------|----------------|-----------|-------|
|                   |                |           |       |
| 10                | min            |           |       |
| Inflow            | 4362           | Storage = | 1785  |
| Outflow           | 2577           |           |       |
|                   |                |           |       |
|                   | min            | <u></u>   | 2760  |
| Inflow            | 5990           | Storage = | 2769  |
| Outflow           | 3221           |           |       |
| 20                | min            |           |       |
| Inflow            | 7250           | Storage = | 3384  |
| Outflow           | 3866           |           |       |
|                   |                |           |       |
| 30                | min            |           |       |
| Inflow            | 9032           | Storage = | 3877  |
| Outflow           | 5154           |           |       |
|                   |                |           |       |
|                   | min            |           |       |
| Inflow            | 9830           | Storage = | 3388  |
| Outflow           | 6443           |           |       |
|                   |                |           |       |
|                   | min            | Charrens  | 2712  |
| Inflow<br>Outflow | 10445<br>7731  | Storage = | 2713  |
| Outilow           | //51           |           |       |
| 60                | min            |           |       |
| Inflow            | 11059          | Storage = | 2039  |
| Outflow           | 9020           |           |       |
|                   |                |           |       |
| 70                | min            |           |       |
| Inflow            | 12042          | Storage = | 1734  |
| Outflow           | 10308          |           |       |
|                   |                |           |       |
|                   | min            |           |       |
| Inflow            | 12780          | Storage = | 1182  |
| Outflow           | 11597          |           |       |
|                   |                |           |       |
|                   | min            | Character | 205   |
| Inflow<br>Outflow | 13271<br>12886 | Storage = | 385   |
| Juliow            | 12000          |           |       |
| 100               | min            |           |       |
| Inflow            | 13517          | Storage = | -657  |
| Outflow           | 14174          |           |       |
|                   |                |           |       |
| 110               | min            |           |       |
| Inflow            | 13517          | Storage = | -1946 |
| Outflow           | 15463          |           |       |

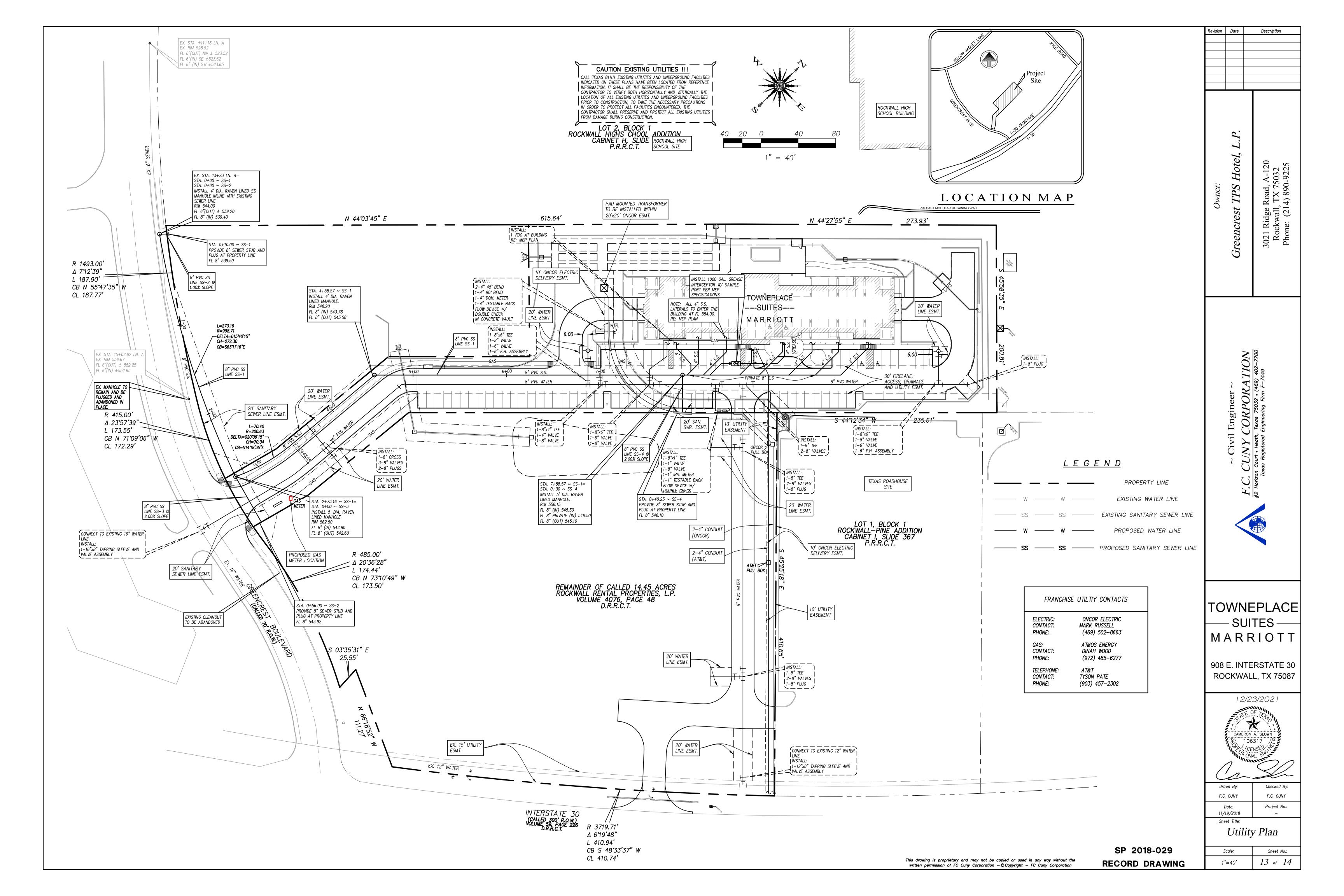
Storage Required =

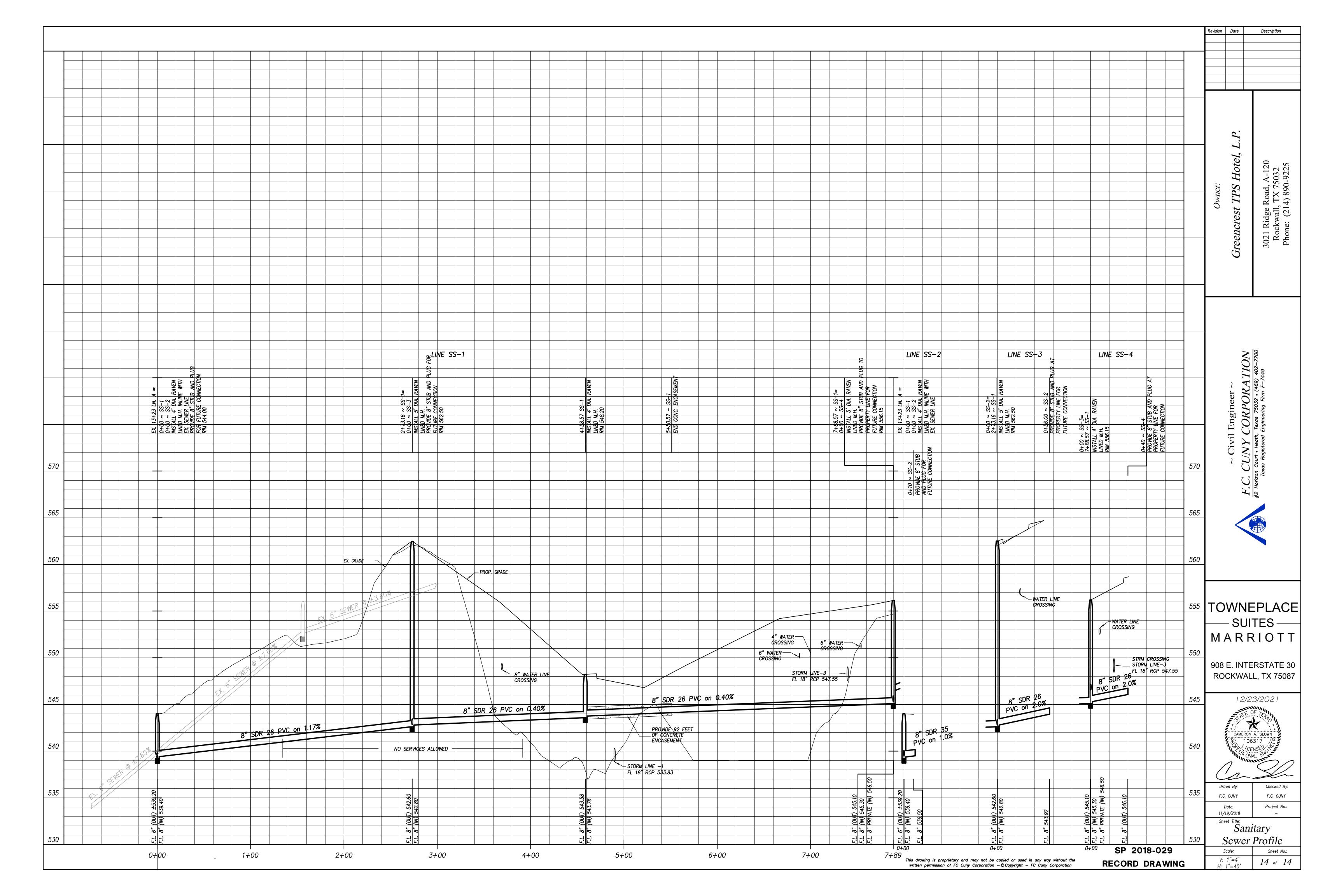
3877 CF

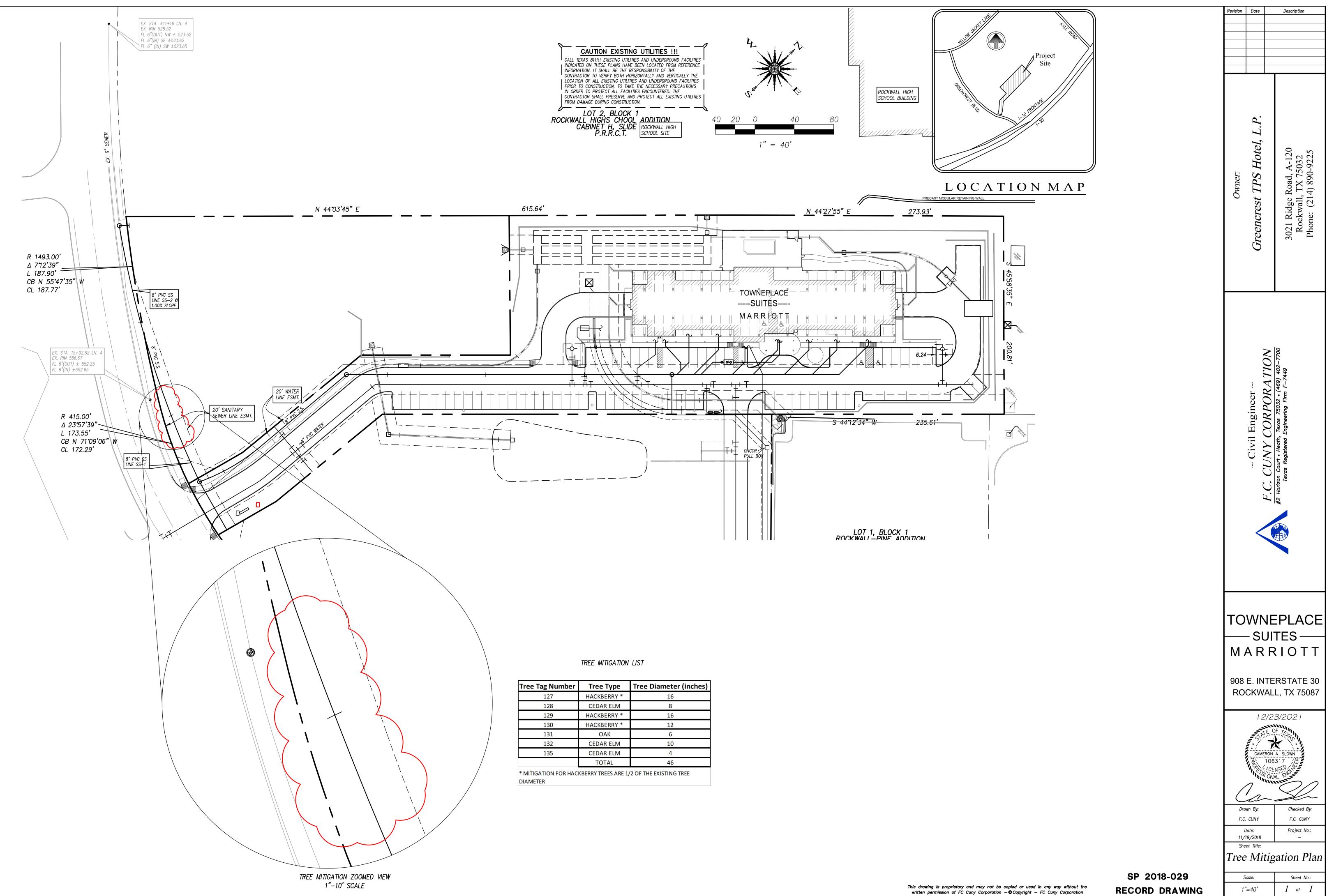
#### 10 YR WSEL 550.55

| Weir Equation            |      |     |  |  |  |  |  |
|--------------------------|------|-----|--|--|--|--|--|
| $Q = Cd * L + H^{(3/2)}$ |      |     |  |  |  |  |  |
| Q =                      | 4.15 | cfs |  |  |  |  |  |
| Cd =                     | 3.37 |     |  |  |  |  |  |
| L =                      | 0.42 | ft  |  |  |  |  |  |
| H =                      | 2.05 | ft  |  |  |  |  |  |

|           | Propos | sed Pond Vo | blume        |
|-----------|--------|-------------|--------------|
| Elevation | Area   | Volume      | Total Volume |
| 548.5     | 10     | 0           | 0            |
| 549       | 801    | 203         | 203          |
| 550       | 2567   | 1684        | 1887         |
| 551       | 4654   | 3611        | 5497         |
| 552       | 4836   | 4745        | 10242        |
| 553       | 4836   | 4836        | 15078        |
| 554       | 4836   | 4836        | 19914        |
| 555       | 4836   | 4836        | 24750        |
|           |        |             |              |


|             |            |                     |              |                  |                  |                 |                    |   |          |       | Revision   | Date                           | Description                              |
|-------------|------------|---------------------|--------------|------------------|------------------|-----------------|--------------------|---|----------|-------|------------|--------------------------------|------------------------------------------|
|             |            | <u>5 YR</u>         | STORM        |                  |                  |                 |                    |   |          |       |            |                                |                                          |
| Pre         |            | onditions           |              | DEVELO           |                  |                 |                    |   |          |       |            |                                |                                          |
| A =         | Q = C      | 2.08                |              | AGE AR<br>DS-2.1 | EAS              |                 |                    |   |          |       |            |                                |                                          |
| C =<br>Tc = |            | 0.35<br>20          |              |                  |                  |                 |                    |   |          |       |            |                                |                                          |
| 5 =<br>Q5 = |            | 4.90<br>3.57        | cfs          |                  |                  |                 |                    |   |          |       |            |                                |                                          |
| Q5 =        |            | 3.57                | cfs          |                  |                  |                 |                    |   |          |       |            |                                |                                          |
|             | Q5 A       | llowable            | =            | 3.57 cfs         | S                |                 |                    |   |          |       |            |                                |                                          |
| nditio      |            |                     | Offsite      | Pass-Th          | rough [          | DRAINAGE        |                    |   |          |       |            | .Р.                            |                                          |
| 2.0         | 00 OS      | AREAS<br>5-3, OS-3. |              |                  | .36              | AREAS<br>OS-3.1 | ]                  |   |          |       |            | l, L                           |                                          |
| 0.3         |            |                     | C =<br>Tc =  |                  | .90<br>10        |                 | -                  |   |          |       |            | ote                            | 120<br>2<br>25                           |
| 20.<br>14.  |            | s                   | I5 =<br>Q5 = |                  | .10<br>.98 c     | fs              |                    |   |          |       | ; •        | H                              | ad, A-12(<br>X 75032<br>890-9225         |
|             |            |                     |              | I                |                  |                 | 1                  |   |          |       | Owner:     | Greencrest TPS Hotel, L.       |                                          |
| F           | Time       | Flow fo             | r Storm Du   | urations<br>C    | Q                |                 |                    |   |          |       | Ō          | st J                           | lge Ro<br>all, T<br>(214)                |
| -           | 10         | 6.10                | ) 0.         | 43               | 6.25             | _               |                    |   |          |       |            | cre                            | )21 Ridge<br>Rockwall<br>hone: (21       |
| _           | 15<br>20   | 5.60<br>4.90        | ) 0.         | 43<br>43         | 5.73<br>5.02     | _               |                    |   |          |       |            | en                             | 3021 Rid<br>Rockv<br>Phone:              |
| _           | 30<br>40   | 4.00                |              | 43<br>43         | 4.10<br>3.48     | _               |                    |   |          |       |            | Gre                            | 30<br>H                                  |
| _           | 50<br>60   | 2.90                |              | 43<br>43         | 2.97<br>2.66     | _               |                    |   |          |       |            | •                              |                                          |
|             | 70<br>80   | 2.40                | ) 0.         | 43<br>43         | 2.46             |                 |                    |   |          |       |            |                                |                                          |
|             | 90         | 2.10                | ) 0.         | 43               | 2.15             | -               |                    |   |          |       |            |                                |                                          |
|             | 100<br>110 | 1.90<br>1.70        |              | 43<br>43         | 1.95<br>1.74     |                 |                    |   |          |       |            |                                |                                          |
| age Ca      | alculatio  | ons                 |              |                  |                  |                 |                    |   |          |       |            |                                |                                          |
|             |            |                     |              |                  |                  |                 |                    |   |          |       |            |                                |                                          |
| w           |            | 748                 | St           | orage =          | :                | 1608            |                    |   |          |       |            | >                              | 002                                      |
| flow        |            | 140                 |              |                  |                  |                 |                    |   |          |       |            | Q                              |                                          |
| 15<br>ow    | min<br>51  | 161                 | St           | orage =          | :                | 2486            |                    |   |          |       |            | A TI                           | 9) 40<br>-7449                           |
| flow        | 26         | 575                 |              |                  |                  |                 |                    |   |          |       |            | $r \sim 10$                    | • (46<br>m F-                            |
|             | min        | 021                 | C+           |                  | _                | 2011            |                    |   |          |       |            | Civil Engineer ~<br>NY CORPORA | 75032 • (469) 402<br>ring Firm F–7449    |
| ow<br>flow  |            | 210                 | 51           | orage =          | · .              | 2811            |                    |   |          |       |            | oR<br>OR                       | Texas 750.<br>Engineering                |
| 30          | min        |                     |              |                  |                  |                 |                    |   |          | _     |            | ii E<br>C                      | th, Te<br>ed Eng                         |
| ow<br>flow  |            | 373<br>281          | St           | orage =          | :                | 3092            | Storage Required = | = | 3092 CF  |       |            | Civ<br>VY                      | • Hea<br>gistere                         |
|             | min        |                     |              |                  |                  |                 |                    |   |          |       |            | ) ~ Inc                        | zon Court • Heath,<br>Texas Registered E |
| w           | 83         | 356                 | St           | orage =          | :                | 3005            |                    |   |          |       |            |                                | lorizon<br>Texu                          |
| flow        |            | 351                 |              |                  |                  |                 |                    |   |          |       |            | <i>F.</i> (                    | 70 H01                                   |
| 50<br>ow    | min<br>89  | 909                 | St           | orage =          | : ;              | 2488            |                    |   |          |       |            |                                |                                          |
| flow        | 64         | 421                 |              |                  |                  |                 |                    |   |          |       |            |                                |                                          |
| 60<br>Sw    | min<br>95  | 585                 | St           | orage =          | :                | 2094            |                    |   |          |       |            |                                |                                          |
| flow        |            | 491                 |              |                  |                  |                 |                    |   |          |       |            |                                |                                          |
|             | min        | 222                 | C+           |                  |                  | 1701            |                    |   |          |       |            |                                |                                          |
| ow<br>flow  | 103<br>85  | 322<br>561          | St           | orage =          |                  | 1761            |                    |   |          |       |            |                                |                                          |
| 80          | min        |                     |              |                  |                  |                 |                    |   |          |       |            |                                |                                          |
| ow<br>flow  | 108<br>96  | 313<br>531          | St           | orage =          | :                | 1182            |                    |   |          |       |            |                                | EPLACE                                   |
|             | min        |                     |              |                  |                  |                 |                    |   |          |       | Ľ          |                                |                                          |
| w           | 116        |                     | St           | orage =          | :                | 911             |                    |   |          |       | <b>Ν</b> Λ |                                | RIOTT                                    |
| flow        | 107        | /02                 |              |                  |                  |                 |                    |   |          |       |            | ΊΥΙΧΓ                          | $\mathbf{x}$                             |
| 100<br>ow   | min<br>116 | 674                 | St           | orage =          | :                | -98             |                    |   |          |       | 908        |                                | ERSTATE 30                               |
| flow        | 117        | 772                 |              |                  |                  |                 |                    |   |          |       |            |                                | L, TX 75087                              |
| 110<br>ow   | min<br>114 | 189                 | C+           | orage =          |                  | 1353            |                    |   |          |       |            |                                |                                          |
| flow        | 128        |                     | 51           |                  |                  |                 |                    |   |          |       |            |                                | 23/2021                                  |
| 5YR         | WSEL       |                     |              |                  | 550.33           |                 |                    |   |          |       |            | STATE.                         | OF TELS                                  |
|             |            | Weir                | Equation     |                  |                  |                 |                    |   |          |       |            | CAMERON                        | N A. SLOWN                               |
| =           |            | Q = Cd              | *L*H^(3/2)   | 1                | .50 cfs          | -               |                    |   |          |       |            | 78: 10<br>77: 10<br>77: 10     | 6317                                     |
| d =         |            |                     |              | 3                | .37              | 1               |                    |   |          |       |            |                                | VAL ENTE                                 |
| =           |            |                     |              |                  | .42 ft<br>.83 ft |                 |                    |   |          |       |            | 2                              | Sh                                       |
|             |            |                     |              |                  |                  |                 |                    |   |          |       |            | awn By:                        | Checked By:                              |
|             |            |                     |              |                  |                  |                 |                    |   |          |       |            | . CUNY<br>Date:                | F.C. CUNY<br>Project No.:                |
|             |            |                     |              |                  |                  |                 |                    |   |          |       | 11/        | 19/2018                        | -                                        |
|             |            |                     |              |                  |                  |                 |                    |   |          |       |            |                                | e Pond                                   |
|             |            |                     |              |                  |                  |                 |                    |   |          | 000   |            |                                | lations                                  |
| This        | drawing    | is propriet         | ary and ma   | iy not be        | copied o         | r used in a     | ny way without the |   | SP 2018- |       |            | Scale:<br>I. T. S.             | Sheet No.:<br>12e of 14                  |
| wri         | tten perm  | nission of          | FC Cuny Co   | prporation       | — 🖸 Сору         | vright – FC     | Cuny Corporation   | R | ECORD DR | AWING |            | 1. 1.3.                        | 120 of 14                                |


|                   |                |                                                        |                 |                    |                       | Revision       | Date                                                           | Description                                                           |
|-------------------|----------------|--------------------------------------------------------|-----------------|--------------------|-----------------------|----------------|----------------------------------------------------------------|-----------------------------------------------------------------------|
|                   | Ļ              | 5 YR STORM                                             |                 |                    |                       |                |                                                                | 2000 p 101                                                            |
| Pre               | sent Condi     | tions PRE. DEVELO                                      | PED             |                    |                       |                |                                                                |                                                                       |
| A =               | Q = CIA        | DRAINAGE AF<br>08 OS-2.1                               | EAS             |                    |                       |                |                                                                |                                                                       |
| <b>C</b> =        | 0.             | 35                                                     |                 |                    |                       |                |                                                                |                                                                       |
| Tc =<br>15 =      |                | 90                                                     |                 |                    |                       |                |                                                                |                                                                       |
| Q5 =<br>Q5 =      |                | 57 cfs<br>57 cfs                                       |                 |                    |                       |                |                                                                |                                                                       |
| Q3 -              | Q5 Allow       |                                                        | s               |                    |                       |                |                                                                |                                                                       |
|                   |                |                                                        |                 |                    |                       |                | Р.                                                             |                                                                       |
| e Conditio        |                | NAGE Offsite Pass-Th<br>EAS Q = CIA                    | rough DRAIN     |                    |                       |                | L.J                                                            |                                                                       |
| 2.0               |                |                                                        | .36 OS-3        | 1                  |                       |                | 51,                                                            |                                                                       |
| 2                 | 0              | Tc =                                                   | 10              |                    |                       |                | loti                                                           | 120<br>132<br>1225                                                    |
| 20.<br>14.        |                |                                                        | .10<br>.98 cfs  |                    |                       |                | HS                                                             | - <sup>5</sup> C                                                      |
|                   |                |                                                        |                 |                    |                       | Owner:         | Greencrest TPS Hotel,                                          | 3021 Ridge Road, A-120<br>Rockwall, TX 75032<br>Phone: (214) 890-9225 |
| F                 |                | w for Storm Durations                                  |                 |                    |                       | 0 <sup>1</sup> | st 1                                                           | 5e R<br>111, J<br>214)                                                |
|                   | Time<br>10     | l C<br>6.10 0.43                                       | Q<br>6.25       |                    |                       |                | ree                                                            | )21 Ridge ]<br>Rockwall,<br>hone: (21                                 |
|                   | 15<br>20       | 5.600.434.900.43                                       | 5.73<br>5.02    |                    |                       |                | SUC                                                            | 3021 Rid<br>Rockv<br>Phone:                                           |
|                   | 30             | 4.00 0.43                                              | 4.10            |                    |                       |                | iree                                                           | 300<br>Pł                                                             |
| -                 | 40<br>50       | 3.40         0.43           2.90         0.43          | 3.48<br>2.97    |                    |                       |                | 0                                                              |                                                                       |
|                   | 60<br>70       | 2.600.432.400.43                                       | 2.66<br>2.46    |                    |                       |                |                                                                |                                                                       |
| F                 | 80             | 2.20 0.43                                              | 2.25            |                    |                       |                |                                                                |                                                                       |
| -                 | 90<br>100      | 2.100.431.900.43                                       | 2.15<br>1.95    |                    |                       | -              |                                                                |                                                                       |
| E                 | 110            | 1.70 0.43                                              | 1.74            |                    |                       |                |                                                                |                                                                       |
| Storage Ca        | alculations    |                                                        |                 |                    |                       |                |                                                                |                                                                       |
|                   |                |                                                        |                 |                    |                       |                |                                                                |                                                                       |
| 10<br>Inflow      | min<br>3748    | Storage =                                              | = 1608          |                    |                       |                | $\sim$                                                         | 8                                                                     |
| Outflow           | 2140           |                                                        |                 |                    |                       |                | 20                                                             |                                                                       |
|                   | min            |                                                        |                 |                    |                       |                | TIC                                                            | 59) 402-<br>                                                          |
| Inflow<br>Outflow | 5161<br>2675   | Storage =                                              | = 2486          |                    |                       |                | ∠ ∑                                                            | 4 L                                                                   |
|                   | min            |                                                        |                 |                    |                       |                | eer<br>OF                                                      | 32 • Firm                                                             |
| Inflow            | 6021           | Storage =                                              | = 2811          |                    |                       |                | RP<br>RP                                                       | ering Fi                                                              |
| Outflow           | 3210           |                                                        |                 |                    |                       |                | Engineer<br>CORPOR                                             | Texas 75032 • (<br>Engineering Firm                                   |
|                   | min            |                                                        | 2002            |                    | 2002 CF               |                | Vil<br>C                                                       | ath,<br>red E                                                         |
| Inflow<br>Outflow | 7373<br>4281   | Storage =                                              | = 3092          | Storage Required = | 3092 CF               |                | Civil<br>NY (                                                  | on Court • Heath,<br>Texas Registered                                 |
| 40                | min            |                                                        |                 |                    |                       |                | $\sim D$                                                       | court<br>as Re                                                        |
| Inflow            | 8356           | Storage =                                              | = 3005          |                    |                       |                |                                                                | rizon<br>Tex                                                          |
| Outflow           | 5351           |                                                        |                 |                    |                       |                | <i>F.C.</i> (                                                  | (2 Ho                                                                 |
| 50<br>Inflow      | min<br>8909    | Storage =                                              | = 2488          |                    |                       |                | -                                                              |                                                                       |
| Outflow           | 6421           |                                                        |                 |                    |                       |                |                                                                |                                                                       |
|                   | min            |                                                        |                 |                    |                       |                |                                                                |                                                                       |
| Inflow<br>Outflow | 9585<br>7491   | Storage =                                              | = 2094          |                    |                       |                |                                                                |                                                                       |
|                   |                |                                                        |                 |                    |                       |                |                                                                |                                                                       |
| Inflow            | min<br>10322   | Storage =                                              | = 1761          |                    |                       |                |                                                                |                                                                       |
| Outflow           | 8561           |                                                        |                 |                    |                       | -              |                                                                |                                                                       |
|                   | min            |                                                        |                 |                    |                       |                |                                                                |                                                                       |
| Inflow<br>Outflow | 10813<br>9631  | Storage =                                              | = 1182          |                    |                       | Іто            | WN                                                             | EPLACE                                                                |
|                   | min            |                                                        |                 |                    |                       |                |                                                                | TES —                                                                 |
| Inflow            | 11612          | Storage =                                              | - 911           |                    |                       |                |                                                                | RIOTT                                                                 |
| Outflow           | 10702          |                                                        |                 |                    |                       |                |                                                                |                                                                       |
| 100<br>Inflow     | min<br>11674   | Storage =                                              | -98             |                    |                       |                | - IXI                                                          |                                                                       |
| Outflow           | 11674          | Storage -                                              | -30             |                    |                       |                |                                                                | ERSTATE 30<br>_L, TX 75087                                            |
| 110               | min            |                                                        |                 |                    |                       |                |                                                                | , i <i>/</i> \ i JUO/                                                 |
| Inflow<br>Outflow | 11489<br>12842 | Storage =                                              | -1353           |                    |                       |                | 12/2                                                           | 23/2021                                                               |
|                   |                |                                                        |                 |                    |                       |                | TE                                                             | OF TEL                                                                |
| 5YR               | WSEL           |                                                        | 550.33          |                    |                       |                |                                                                | ×                                                                     |
|                   |                | Weir Equation                                          |                 |                    |                       |                | CAMERON<br>및 10                                                | A. SLOWN<br>6317 法行                                                   |
| Q =               | ų              |                                                        | s.50 cfs        |                    |                       |                | 10<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>1<br>0<br>3<br>1<br>0 | ENSED CHART                                                           |
| Cd =<br>L =       |                |                                                        | 9.37<br>9.42 ft |                    |                       |                | 7 111                                                          | A A A A A A A A A A A A A A A A A A A                                 |
| H =               |                |                                                        | .83 ft          |                    |                       |                | a                                                              | Sh                                                                    |
|                   |                |                                                        |                 |                    |                       |                | awn By:                                                        | Checked By:                                                           |
|                   |                |                                                        |                 |                    |                       |                | CUNY                                                           | F.C. CUNY<br>Project No.:                                             |
|                   |                |                                                        |                 |                    |                       | 11/            | Date:<br>/19/2018                                              | _                                                                     |
|                   |                |                                                        |                 |                    |                       | She            | eet Title:<br>Offsit                                           | e Pond                                                                |
|                   |                |                                                        |                 |                    |                       |                |                                                                | lations                                                               |
|                   |                |                                                        |                 |                    | SP 2018-029           | 5              | Scale:                                                         | Sheet No.:                                                            |
|                   |                | roprietary and may not be<br>on of FC Cuny Corporation |                 |                    | <b>RECORD DRAWING</b> | ٨              | N. T. S.                                                       | 12e of 14                                                             |
|                   |                |                                                        |                 |                    |                       |                |                                                                |                                                                       |


|                      |                  |                  |              |                |                                                                                                                 |          |       | Revision | Date                                           | Description                                                           |
|----------------------|------------------|------------------|--------------|----------------|-----------------------------------------------------------------------------------------------------------------|----------|-------|----------|------------------------------------------------|-----------------------------------------------------------------------|
|                      | 5 YI             | R STOR           | ?M           |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| Present C            |                  |                  | E. DEVELOP   | ED             |                                                                                                                 |          |       |          |                                                |                                                                       |
| Q =                  | CIA              | _                | AINAGE ARE   |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| 4 =<br>C =           | 2.08<br>0.35     |                  | OS-2.1       |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| Гс =<br>5 =          | 20<br>4.90       |                  |              |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| 25 =<br>25 =<br>25 = | 3.57             | cfs              |              |                |                                                                                                                 |          |       |          |                                                |                                                                       |
|                      | 3.57             | cfs              | 2 57 -6      | ]              |                                                                                                                 |          |       |          |                                                |                                                                       |
| -                    | Allowabl         |                  | 3.57 cfs     |                |                                                                                                                 |          |       |          | <u> </u>                                       |                                                                       |
| itions               | DRAINAG<br>AREAS | E Offsi<br>Q = C | te Pass-Thr  |                | AINAGE<br>AREAS                                                                                                 |          |       |          | L.F                                            |                                                                       |
|                      | )S-3, OS-3       | .2 A =           | 0.3          | 36 OS          | DS-3.1                                                                                                          |          |       |          | л, <u>г</u>                                    |                                                                       |
| 0.35<br>20           |                  | C =<br>Tc =      | 0.9          |                |                                                                                                                 |          |       |          | ote                                            | 120<br>2<br>255                                                       |
| 20.00<br>14.00 c     | fs               | l5 =<br>Q5 =     | 6.1<br>1.9   |                |                                                                                                                 |          |       | • .      | H                                              | A-1)<br>5032<br>)-922                                                 |
| 14.00 [0             | 15               | <u>u</u> 5 –     | 1.3          |                |                                                                                                                 |          |       | Owner:   | Greencrest TPS Hotel,                          | 3021 Ridge Road, A-120<br>Rockwall, TX 75032<br>Phone: (214) 890-9225 |
|                      | Flow fo          | or Storm         | Durations    |                |                                                                                                                 |          |       | Ю        | t T                                            | lge Rc<br>⁄all, T<br>(214)                                            |
| Time<br>10           | e I<br>6.1       | 0                | C<br>0.43    | Q<br>6.25      |                                                                                                                 |          |       |          | res                                            | 21 Ridge<br>Rockwall,<br>hone: (21                                    |
| 15                   | 5.6              | 0                | 0.43         | 5.73           |                                                                                                                 |          |       |          | nci                                            | 3021 Ri<br>Rockv<br>Phone:                                            |
| 20<br>30             | 4.9              |                  | 0.43         | 5.02<br>4.10   |                                                                                                                 |          |       |          | Cee.                                           | 302<br>R<br>Ph                                                        |
| 40<br>50             | 3.4              | 0                | 0.43         | 3.48<br>2.97   |                                                                                                                 |          |       |          | G                                              |                                                                       |
| 60                   | 2.6              | 0                | 0.43         | 2.66           |                                                                                                                 |          |       |          |                                                |                                                                       |
| 70<br>80             | 2.4              |                  | 0.43         | 2.46<br>2.25   |                                                                                                                 |          |       |          |                                                |                                                                       |
| 90                   | 2.1              | 0                | 0.43         | 2.15           |                                                                                                                 |          |       |          |                                                |                                                                       |
| 100<br>110           | 1.9<br>1.7       |                  | 0.43<br>0.43 | 1.95<br>1.74   |                                                                                                                 |          |       |          |                                                |                                                                       |
|                      |                  |                  |              |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| e Calculat           | ions             |                  |              |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| 10 min               | 740              |                  | <b>C</b>     |                |                                                                                                                 |          |       |          |                                                |                                                                       |
|                      | 3748<br>2140     |                  | Storage =    | 1608           | UN CONTRACTOR OF CONTRACTOR |          |       |          | N                                              | -7700                                                                 |
| 15 min               |                  |                  |              |                |                                                                                                                 |          |       |          | OIL                                            |                                                                       |
| 5                    | 5161             |                  | Storage =    | 2486           | 86                                                                                                              |          |       |          |                                                | Texas 75032 • (469) 402<br>Engineering Firm F–7449                    |
| w 2                  | 2675             |                  |              |                |                                                                                                                 |          |       |          | er -<br>NR                                     | • (4<br>irm F                                                         |
| 20 min               |                  |                  |              |                |                                                                                                                 |          |       |          | PC PC                                          | 5032<br>hg Fi                                                         |
|                      | 5021<br>3210     |                  | Storage =    | 2811           | 11                                                                                                              |          |       |          | ngineer ~<br><i>JRPORA</i>                     | ineer<br>ineer                                                        |
| 30 min               |                  |                  |              |                |                                                                                                                 |          |       |          |                                                | h, Te)<br>I Eng                                                       |
|                      | 7373             |                  | Storage =    | 3092           | 92 Storage Required =                                                                                           | 3092 CF  |       |          | Civil Engineer<br>NY CORPOR                    | #2 Horizon Court • Heath, 1<br>Texas Registered E                     |
| w 4                  | 4281             |                  |              |                |                                                                                                                 |          |       |          | $\sim \frac{1}{2}$                             | urt •<br>Regi:                                                        |
| 40 min               | 2250             |                  | Store        | 2007           | 05                                                                                                              |          |       |          | CI<br>CI                                       | n Co<br>exas                                                          |
|                      | 8356<br>5351     |                  | Storage =    | 3005           |                                                                                                                 |          |       |          | C.                                             | Horizc<br>T                                                           |
| 50 min               |                  |                  |              |                |                                                                                                                 |          |       |          | F.                                             | #2                                                                    |
| 5                    | 8909             |                  | Storage =    | 2488           | 88                                                                                                              |          |       |          |                                                |                                                                       |
| w 6                  | 6421             |                  |              |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| 60 min               | 9585             |                  | Storage =    | 2094           | 94                                                                                                              |          |       |          |                                                |                                                                       |
|                      | 7491             |                  | Storage -    | 2034           |                                                                                                                 |          |       |          |                                                |                                                                       |
| 70 min               |                  |                  |              |                |                                                                                                                 |          |       |          |                                                |                                                                       |
|                      | 0322<br>8561     |                  | Storage =    | 1761           | 61                                                                                                              |          |       |          |                                                |                                                                       |
|                      | TOCT             |                  |              |                |                                                                                                                 |          |       |          |                                                |                                                                       |
| 80 min<br>10         | 0813             |                  | Storage =    | 1182           | 82                                                                                                              |          |       |          |                                                |                                                                       |
|                      | 9631             |                  |              | 1102           |                                                                                                                 |          |       | TO       | WNE                                            | EPLACE                                                                |
| 90 min               |                  |                  |              |                |                                                                                                                 |          |       |          |                                                | TES ——                                                                |
| 11                   | 1612             |                  | Storage =    | 911            | 11                                                                                                              |          |       | Μ        |                                                | RIOTT                                                                 |
|                      | 0702             |                  |              |                |                                                                                                                 |          |       |          | <b>x i X I</b>                                 | $\cdots $ $\cdots $ $\cdots $                                         |
| 100 min<br>11        | 1674             |                  | Storage =    | -98            | 98                                                                                                              |          |       | 000      |                                                |                                                                       |
|                      | 1772             |                  |              |                |                                                                                                                 |          |       |          |                                                | RSTATE 30<br>.L, TX 75087                                             |
| 110 min              |                  |                  |              |                |                                                                                                                 |          |       |          | <b>~</b> , , , , , , , , , , , , , , , , , , , | , .,                                                                  |
| 11                   | 1489<br>2842     |                  | Storage =    | -1353          | 53                                                                                                              |          |       |          | 12/2                                           | 3/2021                                                                |
|                      | 2042             |                  |              |                |                                                                                                                 |          |       |          |                                                | OF TELE                                                               |
| YR WSEL              |                  |                  | 5            | 550.33         |                                                                                                                 |          |       |          | × SIA!                                         |                                                                       |
|                      |                  | Equation         |              |                |                                                                                                                 |          |       |          | CAMERON                                        |                                                                       |
|                      | Q = Co           | *L*H^(3          |              | 50 cfs         |                                                                                                                 |          |       |          |                                                | S317                                                                  |
|                      |                  |                  | 3.           | 37             |                                                                                                                 |          |       |          |                                                | AL ENTE                                                               |
|                      |                  |                  |              | 42 ft<br>83 ft |                                                                                                                 |          |       |          | 1-                                             | Sh                                                                    |
|                      |                  |                  |              |                |                                                                                                                 |          |       | Dra      | wn By:                                         | Checked By:                                                           |
|                      |                  |                  |              |                |                                                                                                                 |          |       |          | CUNY                                           | F.C. CUNY                                                             |
|                      |                  |                  |              |                |                                                                                                                 |          |       |          | )ate:<br>19/2018                               | Project No.:<br>–                                                     |
|                      |                  |                  |              |                |                                                                                                                 |          |       |          | -                                              | e Pond                                                                |
|                      |                  |                  |              |                |                                                                                                                 |          |       |          |                                                | e Pona<br>lations                                                     |
|                      |                  |                  |              |                |                                                                                                                 | SP 201   | 8-029 |          | cale:                                          | Sheet No.:                                                            |
|                      |                  |                  |              |                | used in any way without the<br>ht — FC Cuny Corporation                                                         | RECORD E |       |          | . T.S.                                         | 12e of 14                                                             |
| millen pe            | 3510N 0f         |                  | Sol poration | 🚽 Copyright    | is carry corporation                                                                                            |          |       | [        |                                                |                                                                       |

|                   |               |              |                      |                   |                | Revision Date Description                                                                     |
|-------------------|---------------|--------------|----------------------|-------------------|----------------|-----------------------------------------------------------------------------------------------|
|                   |               | <u>5 YR</u>  | <u>STORM</u>         |                   |                |                                                                                               |
| Pre               | esent Con     |              |                      | EVELOP            |                |                                                                                               |
| A =               | Q = CIA       | 2.08         |                      | AGE ARE<br>)S-2.1 | AS             |                                                                                               |
| C =<br>Tc =       |               | 0.35<br>20   |                      |                   |                |                                                                                               |
| <mark> 5</mark> = | :             | 4.90         |                      |                   |                |                                                                                               |
| Q5<br>Q5          |               |              | cfs<br>cfs           |                   |                |                                                                                               |
|                   |               | wable :      | =                    | 3.57 cfs          |                |                                                                                               |
| Conditio          | ons DRA       |              | Offsite F            | Pass-Thr          | ough DRAIN     | P.                                                                                            |
|                   | A             | REAS         | Q = CIA              |                   | ARE            | <i>Γ</i> .                                                                                    |
|                   | 00 OS-3<br>35 | 8, OS-3.2    | A =<br>C =           | 0.                |                | fel, o                                                                                        |
|                   | .00           |              | Tc =<br>15 =         | 1<br>6.           |                | $Hot\epsilon$                                                                                 |
|                   | .00 cfs       |              | Q5 =                 | 1.                |                | <i>Owner:</i><br><i>est TPS Hote</i><br>dge Road, A-120<br><i>v</i> all, TX 75032             |
| г                 |               |              |                      |                   |                | Owner:<br>t TPS<br>e Road, J<br>1, TX 75                                                      |
| -                 | F<br>Time     | low for<br>I | Storm Du             |                   | Q              | C C lige ]                                                                                    |
| -                 | 10<br>15      | 6.10<br>5.60 | 0.4                  |                   | 6.25           | <i>Crc</i><br>Rid<br>ckw                                                                      |
| -                 | 20            | 4.90         | 0.4                  | 43                | 5.73<br>5.02   | <i>Owner:</i><br><i>reencrest TPS</i><br>3021 Ridge Road,<br>Rockwall, TX 7.                  |
| -                 | 30<br>40      | 4.00<br>3.40 | 0.4                  |                   | 4.10<br>3.48   | <i>Owner:</i><br><i>Greencrest TPS Hotel,</i><br>3021 Ridge Road, A-120<br>Rockwall, TX 75032 |
| +                 | 50            | 2.90         | 0.4                  | 43                | 2.97           |                                                                                               |
| -                 | 60<br>70      | 2.60<br>2.40 | 0.4                  |                   | 2.66<br>2.46   |                                                                                               |
| -                 | 80<br>90      | 2.20<br>2.10 | 0.4                  |                   | 2.25<br>2.15   |                                                                                               |
| -                 | 100           | 1.90         | 0.4                  | 43                | 1.95           |                                                                                               |
| Ĺ                 | 110           | 1.70         | 0.4                  | 43                | 1.74           |                                                                                               |
| orage C           | alculation    | s            |                      |                   |                |                                                                                               |
| 10                | ) min         |              |                      |                   |                |                                                                                               |
| nflow             | 374           |              | Sto                  | orage =           | 1608           | <u>700</u>                                                                                    |
| utflow            | 214           | J            |                      |                   |                | O                                                                                             |
| 15<br>nflow       | 516           | 1            | <b>C</b> + <i>i</i>  | orage =           | 2486           | A T/I<br>9) 402<br>-7449                                                                      |
| utflow            | 267           |              |                      | 01450             | 2400           | $RA \sim RA$                                                                                  |
| 20                | ) min         |              |                      |                   |                |                                                                                               |
| nflow<br>utflow   | 602<br>321    |              | Sto                  | orage =           | 2811           | Engin<br>CORP<br>Texas 750<br>Engineering                                                     |
|                   |               |              |                      |                   |                | $\mathrm{Eng}_{Texas}$                                                                        |
| 30<br>nflow       | ) min<br>737  | 3            | Sto                  | orage =           | 3092           | Civil<br>NY (<br>t · Heath,<br>gejstered I                                                    |
| utflow            | 428           | 1            |                      |                   |                | <ul> <li>Civi]</li> <li>JNY</li> <li>Unt · Heath</li> <li>Registered</li> </ul>               |
|                   | ) min         |              |                      |                   |                | ိ ကြိုးရှိ ရှိ                                                                                |
| nflow<br>outflow  | 835<br>535    |              | Sto                  | orage =           | 3005           | Teorizor                                                                                      |
|                   | ) min         |              |                      |                   |                | F.C. (<br>#2 Horizon<br>Texc                                                                  |
| nflow             | 890           | 9            | Ste                  | orage =           | 2488           |                                                                                               |
| utflow            | 642           | 1            |                      |                   |                | <b>ATR</b>                                                                                    |
|                   | ) min         | -            | C+                   |                   | 2004           |                                                                                               |
| nflow<br>utflow   | 958<br>749    | C 1          | Sto                  | orage =           | 2094           |                                                                                               |
| 70                | ) min         |              |                      |                   |                |                                                                                               |
| nflow             | 1032          |              | Sto                  | orage =           | 1761           |                                                                                               |
|                   |               | L            |                      |                   |                |                                                                                               |
| 80<br>nflow       | ) min<br>1081 | 3            | Ste                  | orage =           | 1182           |                                                                                               |
| utflow            | 963           |              |                      | 0-                |                | TOWNEPLA                                                                                      |
| 90                | ) min         |              |                      |                   |                | SUITES -                                                                                      |
| nflow<br>outflow  | 1161          | _            | Sto                  | orage =           | 911            | MARRIOT                                                                                       |
|                   |               |              |                      |                   |                |                                                                                               |
| 100<br>nflow      | ) min<br>1167 | 4            | Sto                  | orage =           | -98            | 908 E. INTERSTATE                                                                             |
| utflow            | 1177          | 2            |                      |                   |                | ROCKWALL, TX 75                                                                               |
|                   | ) min         |              |                      |                   |                |                                                                                               |
| nflow<br>utflow   | 1148<br>1284  |              | Sto                  | orage =           | -1353          | 12/23/2021                                                                                    |
| EVD               | WSEL          |              |                      |                   | 550.33         | ATE OF TEL                                                                                    |
| זזכן              | VVJEL         |              |                      |                   | 56.000         |                                                                                               |
|                   |               |              | quation<br>L*H^(3/2) |                   |                | CAMERON A. SLOWN<br>羽: 106317 :5                                                              |
| Q =               |               | -, U         | (5/2)                | 3.                | 50 cfs         | CENSED HOLE                                                                                   |
| Cd =<br>L =       |               |              |                      |                   | 37<br>42 ft    | - Contraction                                                                                 |
| H =               | _             |              |                      |                   | 83 ft          | 1 Can 26                                                                                      |
|                   |               |              |                      |                   |                | Drawn By: Checked                                                                             |
|                   |               |              |                      |                   |                | F.C. CUNY F.C. CUI                                                                            |
|                   |               |              |                      |                   |                | Inter Destact                                                                                 |
|                   |               |              |                      |                   |                | Date: Project N<br>11/19/2018 –                                                               |
|                   |               |              |                      |                   |                |                                                                                               |
|                   |               |              |                      |                   |                | 11/19/2018 –                                                                                  |
|                   |               |              |                      |                   | copied or used | sheet Title:<br>Offsite Pond                                                                  |

| ) =  |  |
|------|--|
| Cd = |  |
| =    |  |
| =    |  |







| Tree Tag Number | Tree Type   | Tree Diameter (inches) |
|-----------------|-------------|------------------------|
| 127             | HACKBERRY * | 16                     |
| 128             | CEDAR ELM   | 8                      |
| 129             | HACKBERRY * | 16                     |
| 130             | HACKBERRY * | 12                     |
| 131             | OAK         | 6                      |
| 132             | CEDAR ELM   | 10                     |
| 135             | CEDAR ELM   | 4                      |
|                 | TOTAL       | 46                     |